Previous |  Up |  Next

Article

Title: Scalar perturbations in f(R) cosmologies in the late Universe (English)
Author: Novák, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 313-324
Summary lang: English
.
Category: math
.
Summary: Standard approach in cosmology is hydrodynamical approach, when galaxies are smoothed distributions of matter. Then we model the Universe as a fluid. But we know, that the Universe has a discrete structure on scales 150 - 370 MPc. Therefore we must use the generalized mechanical approach, when is the mass concentrated in points. Methods of computations are then different. We focus on $f(R)$-theories of gravity and we work in the cell of uniformity in the late Universe. We do the scalar perturbations and we use 3 approximations. First we neglect the time derivatives and we do the astrophysical approach and we find the potentials $\Phi $ and $\Psi $ in this case. Then we do the large scalaron mass approximation and we again obtain the potentials. Final step is the quasi-static approximation, when we use the equations from astrophysical approach and the result are the potentials $\Phi $ and $\Psi $. The resulting potentials are combination of Yukawa terms, which are characteristic for $f(R)$-theories, and standard potential. (English)
Keyword: mechanical approach
Keyword: Hubble law
Keyword: Friedmann equation
Keyword: Einstein equation
Keyword: scalar perturbation
Keyword: tensor of energy-momentum
MSC: 83C55
MSC: 83D05
MSC: 83F05
idZBL: Zbl 06861559
idMR: MR3746066
DOI: 10.5817/AM2017-5-313
.
Date available: 2018-01-03T14:49:47Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147022
.
Reference: [1] Berry, C.P.L., Gair, J.R.: Linearized $f(R)$ gravity: gravitational radiation and solar system tests.Phys. Rev. D 83 1004022 (2011), arXiv:1104.0819.
Reference: [2] Burgazli, A., Eingorn, M., Zhuk, A.: Rigorous theoretical constraint on constant negative EoS parameter $w$ and its effect for late Universe.Eur. Phys. J. C 75 118 (2015), arXiv:1301.0418. 10.1140/epjc/s10052-015-3335-7
Reference: [3] Eingorn, M.: First-order cosmological perturbationsengendered by point-like masses.arXiv:1509.03835v3.
Reference: [4] Eingorn, M., Novák, J., Zhuk, A.: $f(R)$ gravity:scalar peturbations in the late Universe.Eur. Phys. J. C 74 3005 (2014), arXiv:astro-ph/1401.5410. 10.1140/epjc/s10052-014-3005-1
Reference: [5] Eingorn, M., Zhuk, A.: Hubble flows and gravitational potentials in observable Universe.arXiv:1205.2384. MR 2989879
Reference: [6] Eingorn, M., Zhuk, A.: Weak-field limit of $f(R)$-gravity in three and more spatial dimensions.Phys. Rev. D 84 024023 (2011), arXiv:1104.1456 [gr-qc]. 10.1103/PhysRevD.84.024023
Reference: [7] Eingorn, M., Zhuk, A.: Remarks on mechanical approach to observable universe.JCAP 05 024 (2014), arXiv: 1309.4924. MR 3219178
Reference: [8] Garcia-Bellido, J.: Cosmology and astrophysics.arXiv: astro-ph/0502139.
Reference: [9] Hu, W., Sawicky, I.: Models of $f(R)$ cosmic acceleration that evade solar system test.Phys. Rev. D 76 064004 (2007), arxiv:0705.1158 [astro-ph].
Reference: [10] Jaime, L.G., Patino, L., Salgado, M.: $f(R)$ cosmology revisted.arXiv:1206.1642 [gr-qc].
Reference: [11] Jaime, L.G., Patino, L., Salgado, M.: Note on the equation of state of geometric dark-energy in f(R) gravity.Phys. Rev.D 89 084010 (2014), arXiv:gr-qc/1312.5428. 10.1103/PhysRevD.89.084010
Reference: [12] Miranda, V., Joras, S., Waga, I., Quartin, M.: Viable singularity-free f(R)-gravity without a cosmological constant.Phys. Rev. Lett. 102 221101 (2009), arXiv: 0905.1941 [astro-ph]. 10.1103/PhysRevLett.102.221101
Reference: [13] Naf, J., Jetzer, P.: On the $1/c$ expansion of $f(R)$ gravity.Phys. Rev. D 81 104003 (2010), arXiv:1004.2014 [gr-qc].
Reference: [14] Riess, A.G. et al., : Observational evidence from supernovae for an accelerating Universe and a cosmological constant.Astronom. J. 116 (1998), 1009–1038. 10.1086/300499
Reference: [15] Starobinsky, A.A.: Disappearing cosmological constant in $f(R)$ gravity.JETP Lett 86 (2007), 157–163, arXiv:0706.2041. 10.1134/S0021364007150027
Reference: [16] Tsujikawa, S., Udin, K., Tavakol, R.: Density perturbations in $f(R)$ gravity theories in metric and Palatini formalisms.Phys. Rev. D 77 043007 (2008), arXiv:0712.0082v2. MR 2421223, 10.1103/PhysRevD.77.043007
.

Files

Files Size Format View
ArchMathRetro_053-2017-5_4.pdf 493.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo