Title:
|
Scalar perturbations in f(R) cosmologies in the late Universe (English) |
Author:
|
Novák, Jan |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
53 |
Issue:
|
5 |
Year:
|
2017 |
Pages:
|
313-324 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Standard approach in cosmology is hydrodynamical approach, when galaxies are smoothed distributions of matter. Then we model the Universe as a fluid. But we know, that the Universe has a discrete structure on scales 150 - 370 MPc. Therefore we must use the generalized mechanical approach, when is the mass concentrated in points. Methods of computations are then different. We focus on $f(R)$-theories of gravity and we work in the cell of uniformity in the late Universe. We do the scalar perturbations and we use 3 approximations. First we neglect the time derivatives and we do the astrophysical approach and we find the potentials $\Phi $ and $\Psi $ in this case. Then we do the large scalaron mass approximation and we again obtain the potentials. Final step is the quasi-static approximation, when we use the equations from astrophysical approach and the result are the potentials $\Phi $ and $\Psi $. The resulting potentials are combination of Yukawa terms, which are characteristic for $f(R)$-theories, and standard potential. (English) |
Keyword:
|
mechanical approach |
Keyword:
|
Hubble law |
Keyword:
|
Friedmann equation |
Keyword:
|
Einstein equation |
Keyword:
|
scalar perturbation |
Keyword:
|
tensor of energy-momentum |
MSC:
|
83C55 |
MSC:
|
83D05 |
MSC:
|
83F05 |
idZBL:
|
Zbl 06861559 |
idMR:
|
MR3746066 |
DOI:
|
10.5817/AM2017-5-313 |
. |
Date available:
|
2018-01-03T14:49:47Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147022 |
. |
Reference:
|
[1] Berry, C.P.L., Gair, J.R.: Linearized $f(R)$ gravity: gravitational radiation and solar system tests.Phys. Rev. D 83 1004022 (2011), arXiv:1104.0819. |
Reference:
|
[2] Burgazli, A., Eingorn, M., Zhuk, A.: Rigorous theoretical constraint on constant negative EoS parameter $w$ and its effect for late Universe.Eur. Phys. J. C 75 118 (2015), arXiv:1301.0418. 10.1140/epjc/s10052-015-3335-7 |
Reference:
|
[3] Eingorn, M.: First-order cosmological perturbationsengendered by point-like masses.arXiv:1509.03835v3. |
Reference:
|
[4] Eingorn, M., Novák, J., Zhuk, A.: $f(R)$ gravity:scalar peturbations in the late Universe.Eur. Phys. J. C 74 3005 (2014), arXiv:astro-ph/1401.5410. 10.1140/epjc/s10052-014-3005-1 |
Reference:
|
[5] Eingorn, M., Zhuk, A.: Hubble flows and gravitational potentials in observable Universe.arXiv:1205.2384. MR 2989879 |
Reference:
|
[6] Eingorn, M., Zhuk, A.: Weak-field limit of $f(R)$-gravity in three and more spatial dimensions.Phys. Rev. D 84 024023 (2011), arXiv:1104.1456 [gr-qc]. 10.1103/PhysRevD.84.024023 |
Reference:
|
[7] Eingorn, M., Zhuk, A.: Remarks on mechanical approach to observable universe.JCAP 05 024 (2014), arXiv: 1309.4924. MR 3219178 |
Reference:
|
[8] Garcia-Bellido, J.: Cosmology and astrophysics.arXiv: astro-ph/0502139. |
Reference:
|
[9] Hu, W., Sawicky, I.: Models of $f(R)$ cosmic acceleration that evade solar system test.Phys. Rev. D 76 064004 (2007), arxiv:0705.1158 [astro-ph]. |
Reference:
|
[10] Jaime, L.G., Patino, L., Salgado, M.: $f(R)$ cosmology revisted.arXiv:1206.1642 [gr-qc]. |
Reference:
|
[11] Jaime, L.G., Patino, L., Salgado, M.: Note on the equation of state of geometric dark-energy in f(R) gravity.Phys. Rev.D 89 084010 (2014), arXiv:gr-qc/1312.5428. 10.1103/PhysRevD.89.084010 |
Reference:
|
[12] Miranda, V., Joras, S., Waga, I., Quartin, M.: Viable singularity-free f(R)-gravity without a cosmological constant.Phys. Rev. Lett. 102 221101 (2009), arXiv: 0905.1941 [astro-ph]. 10.1103/PhysRevLett.102.221101 |
Reference:
|
[13] Naf, J., Jetzer, P.: On the $1/c$ expansion of $f(R)$ gravity.Phys. Rev. D 81 104003 (2010), arXiv:1004.2014 [gr-qc]. |
Reference:
|
[14] Riess, A.G. et al., : Observational evidence from supernovae for an accelerating Universe and a cosmological constant.Astronom. J. 116 (1998), 1009–1038. 10.1086/300499 |
Reference:
|
[15] Starobinsky, A.A.: Disappearing cosmological constant in $f(R)$ gravity.JETP Lett 86 (2007), 157–163, arXiv:0706.2041. 10.1134/S0021364007150027 |
Reference:
|
[16] Tsujikawa, S., Udin, K., Tavakol, R.: Density perturbations in $f(R)$ gravity theories in metric and Palatini formalisms.Phys. Rev. D 77 043007 (2008), arXiv:0712.0082v2. MR 2421223, 10.1103/PhysRevD.77.043007 |
. |