Previous |  Up |  Next

Article

Title: Almost c-spinorial geometry (English)
Author: Púček, Roland
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 325-334
Summary lang: English
.
Category: math
.
Summary: Almost c-spinorial geometry arises as an interesting example of the metrisability problem for parabolic geometries. It is a complex analogue of real spinorial geometry. In this paper, we first define the type of parabolic geometry in question, then we discuss its underlying geometry and its homogeneous model. We compute irreducible components of the harmonic curvature and discuss the conditions for regularity. In the second part of the paper, we describe the linearisation of the metrisability problem for Hermitian and skew-Hermitian metrics, state the corresponding first BGG equations and present explicit formulae for their solutions on the homogeneous model. (English)
Keyword: spinorial geometry
Keyword: metrisability problem
Keyword: equivalence problem
Keyword: first BGG operator
MSC: 53A40
MSC: 53B35
idZBL: Zbl 06861560
idMR: MR3746067
DOI: 10.5817/AM2017-5-325
.
Date available: 2018-01-03T14:51:14Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147023
.
Reference: [1] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences.J. Reine Angew. Math. 537 (2001), 67–103. Zbl 0985.58002, MR 1856258
Reference: [2] Calderbank, D.M.J., Diemer, T., Souček, V.: Ricci-corrected derivatives and invariant differential operators.Differential Geom. Appl. 23 (2) (2005), 149–175. Zbl 1082.58037, MR 2158042, 10.1016/j.difgeo.2004.07.009
Reference: [3] Calderbank, D.M.J., Eastwood, M.G., Matveev, V.S., Neusser, K.: C-projective geometry.2015, arXiv:1512.04516v1 [math.DG].
Reference: [4] Calderbank, D.M.J., Slovák, J., Souček, V.: Subriemannian metrics and parabolic geometries.private communication.
Reference: [5] Čap, A., Gover, A.R., Hammerl, M.: Normal BGG solutions and polynomials.Internat. J. Math. 23 (2012), 29pp. Zbl 1263.53016, MR 3005570
Reference: [6] Čap, A., Slovák, J.: Parabolic geometries. I.Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009, Background and general theory. Zbl 1183.53002, MR 2532439, 10.1090/surv/154/03
Reference: [8] Eastwood, M.: Notes on projective differential geometry.Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 41–60. Zbl 1186.53020, MR 2384705
Reference: [9] Eastwood, M., Matveev, V.: Metric connections in projective differential geometry.Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, Springer, New York, 2008, pp. 339–350. Zbl 1144.53027, MR 2384718
Reference: [10] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives.J. Eur. Math. Soc. (JEMS) 14 (6) (2012), 1859–1883. Zbl 1264.58029, MR 2984590, 10.4171/JEMS/349
Reference: [11] Onishchik, A.L.: Lectures on real semisimple Lie algebras and their representations.ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2004. Zbl 1080.17001, MR 2041548
Reference: [12] Púček, R.: Applications of invariant operators in real parabolic geometries.Master's thesis, Charles University, 2016, https://is.cuni.cz/webapps/zzp/detail/166442/.
Reference: [13] Šilhan, J.: Cohomology of Lie algebras - online service.http://web.math.muni.cz/~silhan/lie/.
Reference: [14] Slovák, J., Souček, V.: Invariant operators of the first order on manifolds with a given parabolic structure.Global analysis and harmonic analysis (Marseille-Luminy, (1999), Sémin. Congr., vol. 4, Soc. Math. France, Paris, 2000, pp. 251–276. Zbl 0998.53021, MR 1822364
Reference: [15] Yamaguchi, K.: Geometry of linear differential systems towards contact geometry of second order.Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., vol. 144, 2008, pp. 151–203. Zbl 1146.58003, MR 2384710
.

Files

Files Size Format View
ArchMathRetro_053-2017-5_5.pdf 509.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo