Previous |  Up |  Next

Article

Title: Three dimensional near-horizon metrics that are Einstein-Weyl (English)
Author: Randall, Matthew
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 335-345
Summary lang: English
.
Category: math
.
Summary: We investigate which three dimensional near-horizon metrics $g_{NH}$ admit a compatible 1-form $X$ such that $(X, [g_{NH}])$ defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type. (English)
MSC: 53B15
MSC: 53B30
MSC: 83C57
idZBL: Zbl 06861561
idMR: MR3746068
DOI: 10.5817/AM2017-5-335
.
Date available: 2018-01-03T14:52:51Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147024
.
Reference: [1] Calderbank, D.M.J., Kruglikov, B.: Integrability via geometry: dispersionless differential equations in three and four dimensions.arXiv:1612.02753.
Reference: [2] Cartan, E.: Sur une classe d’espaces de Weyl.Ann. Sci. École Norm. Sup. (3) 60 (1943), 1–16. Zbl 0028.30802, MR 0014292, 10.24033/asens.901
Reference: [3] Doubrov, B., Ferapontov, E.V., Kruglikov, B., Novikov, V.: On the integrability in Grassmann geometries: integrable systems associated with fourfolds $Gr(3,5)$.arXiv:1503.02274.
Reference: [4] Dunajski, M., Ferapontov, E.V., Kruglikov, B.: On the Einstein-Weyl and conformal self-duality equations.J. Math. Phys. 56 (8) (2015), 10pp., 083501. Zbl 1325.53058, MR 3455337, 10.1063/1.4927251
Reference: [5] Dunajski, M., Gutowski, J., Sabra, W.: Einstein-Weyl spaces and near-horizon geometry.Classical Quantum Gravity 34 (2017), 21pp., 045009. Zbl 1358.83081, MR 3605882, 10.1088/1361-6382/aa5992
Reference: [6] Dunajski, M., Kryński, W.: Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs.Math. Proc. Cambridge Philos. Soc. 157 (1) (2014), 139–150. Zbl 1296.53036, MR 3211812, 10.1017/S0305004114000164
Reference: [7] Dunajski, M., Kryński, W.: Point invariants of third-order ODEs and hyper-CR Einstein-Weyl structures.J. Geom. Phys. 86 (2014), 296–302. Zbl 1316.34036, MR 3282331, 10.1016/j.geomphys.2014.08.012
Reference: [8] Dunajski, M., Mason, L.J., Tod, K.P.: Einstein-Weyl geometry, the dKP equation and twistor theory.J. Geom. Phys. 37 (2001), 63–93. Zbl 0990.53052, MR 1807082, 10.1016/S0393-0440(00)00033-4
Reference: [9] Eastwood, M.G.: Notes on conformal differential geometry.Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 57–96. Zbl 0911.53020, MR 1463509
Reference: [10] Eastwood, M.G., Tod, K.P.: Local constraints on Einstein-Weyl geometries.J. Reine Angew. Math. 491 (1997), 183–198. Zbl 0876.53029, MR 1476092
Reference: [11] Ferapontov, E.V., Kruglikov, B.: Dispersionless integrable systems in 3D and Einstein-Weyl geometry.J. Differential Geom. 97 (2014), 215–254. Zbl 1306.37084, MR 3263506, 10.4310/jdg/1405447805
Reference: [12] Hitchin, N.J.: Complex manifolds and Einstein’s equations.Lecture Notes in Math., Springer, Berlin-New York, 1982, Twistor geometry and nonlinear systems (Primorsko, 1980), 73–99. Zbl 0507.53025, MR 0699802, 10.1007/BFb0066025
Reference: [13] Kunduri, H.K., Lucietti, J.: A classification of near-horizon geometries of extremal vacuum black holes.J. Math. Phys. 50 (2009), 41pp., 082502. Zbl 1223.83032, MR 2554413, 10.1063/1.3190480
Reference: [14] Kunduri, H.K., Lucietti, J.: Classification of near-horizon geometries of extremal black holes.Living Rev. Relativity 16 (2013), 8pp., arXiv:1306.2517v2. Zbl 1320.83005, MR 2554413, 10.12942/lrr-2013-8
Reference: [15] LeBrun, C., Mason, L.J.: The Einstein-Weyl equations, scattering maps, and holomorphic disks.Math. Res. Lett. 16 (2009), 291–301. Zbl 1176.53071, MR 2496745, 10.4310/MRL.2009.v16.n2.a7
Reference: [16] Lewandowski, J., Pawlowski, T.: Extremal isolated horizons: A local uniqueness theorem.Classical Quantum Gravity 20 (2003), 587–606, arXiv:gr-qc/0208032. Zbl 1028.83025, MR 1959394, 10.1088/0264-9381/20/4/303
Reference: [17] Lewandowski, J., Racz, I., Szereszeweski, A.: Near horizon geometries and black hole holograph.Phys. Rev. D 96 (2017), 044001, arXiv:1701.01704. 10.1103/PhysRevD.96.044001
Reference: [18] Lewandowski, J., Szereszeweski, A., Waluk, P.: When isolated horizons met near horizon geometries.2nd LeCosPA Symposium Proceedings, “Everything about Gravity" celebrating the centenary of Einstein's General Relativity, December 14-18, Taipei, 2015, arXiv:1602.01158. MR 1744050
Reference: [19] Li, C., Lucietti, J.: Three-dimensional black holes and descendants.Phys. Lett. B 738 (2014), 48–54. Zbl 1360.83037, MR 3272448, 10.1016/j.physletb.2014.09.012
Reference: [20] Nurowski, P.: Differential equations and conformal structures.J. Geom. Phys. 55 (1) (2005), 19–49. Zbl 1082.53024, MR 2157414, 10.1016/j.geomphys.2004.11.006
Reference: [21] Tod, K.P.: Einstein-Weyl spaces and third-order differential equations.J. Math. Phys. 41 (2000), 5572–5581. Zbl 0979.53050, MR 1770973, 10.1063/1.533426
.

Files

Files Size Format View
ArchMathRetro_053-2017-5_6.pdf 493.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo