Previous |  Up |  Next

Article

Title: Computation of linear algebraic equations with solvability verification over multi-agent networks (English)
Author: Zeng, Xianlin
Author: Cao, Kai
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 803-819
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the problem of solving a linear algebraic equation $Ax=b$ in a distributed way by a multi-agent system with a solvability verification requirement. In the problem formulation, each agent knows a few columns of $A$, different from the previous results with assuming that each agent knows a few rows of $A$ and $b$. Then, a distributed continuous-time algorithm is proposed for solving the linear algebraic equation from a distributed constrained optimization viewpoint. The algorithm is proved to have two properties: firstly, the algorithm converges to a least squares solution of the linear algebraic equation with any initial condition; secondly, each agent in the algorithm knows the solvability property of the linear algebraic equation, that is, each agent knows whether the obtained least squares solution is an exact solution or not. (English)
Keyword: multi-agent network
Keyword: distributed optimization
Keyword: linear algebraic equation
Keyword: least squares solution
Keyword: solvability verification
MSC: 15A06
MSC: 93D20
idZBL: Zbl 06861625
idMR: MR3750104
DOI: 10.14736/kyb-2017-5-0803
.
Date available: 2018-02-26T11:42:14Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147094
.
Reference: [1] Godsil, C., Royle, G. F.: Algebraic Graph Theory..Springer-Verlag, New York 2001. Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [2] Haddad, W. M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach..Princeton University Press, New Jersey 2008. Zbl 1142.34001, MR 2381711
Reference: [3] Hui, Q., Haddad, W. M., Bhat, S. P.: Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria..IEEE Trans. Automat. Control 54 (2009), 2465-2470. MR 2562855, 10.1109/tac.2009.2029397
Reference: [4] Liu, Y., Lageman, C., Anderson, B., Shi, G.: An Arrow-Hurwicz-Uzawa type flow as least squares solver for network linear equations..arXiv:1701.03908v1.
Reference: [5] Liu, J., Morse, A. S., Nedic, A., Basar, T.: Exponential convergence of a distributed algorithm for solving linear algebraic equations..Automatica 83 (2017), 37-46. MR 3680412, 10.1016/j.automatica.2017.05.004
Reference: [6] Liu, J., Mou, S., Morse, A. S.: Asynchronous distributed algorithms for solving linear algebraic equations..IEEE Trans. Automat Control PP (2017), 99, 1-1. 10.1109/TAC.2017.2714645
Reference: [7] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation..IEEE Trans. Automat. Control 60 (2015), 2863-2878. MR 3419577, 10.1109/tac.2015.2414771
Reference: [8] Nedic, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks..IEEE Trans. Automat. Control 55 (2010), 922-938. MR 2654432, 10.1109/tac.2010.2041686
Reference: [9] Ni, W., Wang, X.: Averaging approach to distributed convex optimization for continuous-time multi-agent systems..Kybernetika 52 (2016), 898-913. MR 3607853, 10.14736/kyb-2016-6-0898
Reference: [10] Qiu, Z., Liu, S., Xie, L.: Distributed constrained optimal consensus of multi-agent systems..Automatica 68 (2016), 209-215. MR 3483686, 10.1016/j.automatica.2016.01.055
Reference: [11] Ruszczynski, A.: Nonlinear Optimization..Princeton University Press, New Jersey 2006. MR 2199043
Reference: [12] Shi, G., Anderson, B. D. O.: Distributed network flows solving linear algebraic equations..In: American Control Conference, Boston 2016, pp. 2864-2869. 10.1109/acc.2016.7525353
Reference: [13] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations..IEEE Trans. Automat. Control 62 (2017), 2659-2764. MR 3660554, 10.1109/tac.2016.2612819
Reference: [14] Shi, G., Johansson, K. H.: Randomized optimal consensus of multi-agent systems..Automatica 48 (2012), 3018-3030. MR 2995677, 10.1016/j.automatica.2012.08.018
Reference: [15] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems..Systems Control Lett. 83 (2015), 45-52. Zbl 1327.93033, MR 3373270, 10.1016/j.sysconle.2015.06.006
Reference: [16] Zeng, X., Hui, Q.: Energy-event-triggered hybrid supervisory control for cyber-physical network systems..IEEE Trans. Automat. Control 60 (2015), 3083-3088. MR 3419603, 10.1109/tac.2015.2409900
Reference: [17] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach..IEEE Trans. Automat. Control 62 (2017), 5227-5233. MR 3708893, 10.1109/tac.2016.2628807
.

Files

Files Size Format View
Kybernetika_53-2017-5_4.pdf 838.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo