Previous |  Up |  Next

Article

Title: Alternate checking criteria for reachable controllability of rectangular descriptor systems (English)
Author: Mishra, Vikas Kumar
Author: Tomar, Nutan Kumar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 820-837
Summary lang: English
.
Category: math
.
Summary: Contrary to state space systems, there are different notions of controllability for linear time invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions. A comprehensive study of different notions of controllability for linear descriptor systems is performed. Also, it is proved that reachable controllability for general linear time invariant descriptor system is equivalent to the controllability of some matrix pair under an assumption milder than impulse controllability. The whole theory has been developed by coining two new decompositions for system matrices. Examples are given to illustrate the presented theory. (English)
Keyword: descriptor systems
Keyword: controllability
Keyword: reachable controllability
MSC: 93B05
MSC: 93B25
idZBL: Zbl 06861626
idMR: MR3750105
DOI: 10.14736/kyb-2017-5-0820
.
Date available: 2018-02-26T11:44:39Z
Last updated: 2023-08-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147095
.
Reference: [1] Berger, T., Reis, T.: Controllability of linear differential-algebraic systems: A survey..In: Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, (A. Ilchman and T. Reis, eds.), Springer-Verlag, Berlin, Heildelberg 2013, pp. 1-61. MR 3076031, 10.1007/978-3-642-34928-7_1
Reference: [2] Berger, T., Trenn, S.: Kalman controllability decompositions for differential-algebraic systems..Syst. Control Lett. 71 (2014), 54-61. MR 3250381, 10.1016/j.sysconle.2014.06.004
Reference: [3] Bernstein, D. S.: Matrix Mathematics: Theory, Facts, And Formulas With Application To Linear Systems Theory..Princeton University Press 41, Princeton 2005. MR 2123424
Reference: [4] Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N. K.: Feedback design for regularizing descriptor systems..Linear Algebra Appl. 299 (1999), 119-151. MR 1723712, 10.1016/s0024-3795(99)00167-6
Reference: [5] Campbell, S.: Singular Systems Of Differential Equations..Pitman 40, San Francisco 1980. MR 0569589
Reference: [6] Campbell, S.: Singular Systems Of Differential Equations II..Pitman 61, San Francisco 1982. MR 0665426
Reference: [7] Campbell, S. L., Kunkel, P., Mehrmann, V.: Regularization of linear and nonlinear descriptor systems..In: Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control 2012, pp. 17-36. MR 2905713, 10.1137/9781611972252.ch2
Reference: [8] Chen, C.-T.: Linear System Theory And Design..Oxford University Press, Inc. 1995.
Reference: [9] Christodoulou, M., Paraskevopoulos, P.: Solvability, controllability, and observability of singular systems..J. Optim. Theory Appl. 45 (1985), 53-72. MR 0778157, 10.1007/bf00940813
Reference: [10] Chua, L. O., Desoer, C. A., Kuh, E. S.: Linear and Nonlinear Circuits..McGraw-Hill, New York 1987. MR 0356971
Reference: [11] Cobb, D.: Controllability, observability, and duality in singular systems..IEEE Trans. Automat. Control 29 (1984), 1076-1082. MR 0771396, 10.1109/tac.1984.1103451
Reference: [12] Dai, L.: The difference between regularity and irregularity in singular systems..Circuits Syst. Signal Process. 8 (1989), 435-444. MR 1027908, 10.1007/bf01599765
Reference: [13] Dai, L.: Singular Control Systems..Springer Verlag, Lecture Notes in Control and Information Sciences, Berlin 1989. MR 0986970, 10.1007/bfb0002475
Reference: [14] Duan, G.-R.: Analysis and Design Of Descriptor Linear Systems..Springer 10, Berlin 2010. MR 2723074
Reference: [15] Duan, G.-R., Nichols, N. K., Liu, G.-P.: Robust pole assignment in descriptor linear systems via state feedback..Eur. J. Control 8 (2002), 136-149. 10.3166/ejc.8.136-149
Reference: [16] Gantmacher, F. R.: The Theory of Matrices: Vol. 2..Chelsea Publishing Company, New York 1959. MR 0107649
Reference: [17] Geerts, T.: Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case..Linear Algebra Appl. 181 (1993), 111-130. MR 1204345, 10.1016/0024-3795(93)90027-l
Reference: [18] Golub, G. H., Loan, C. F. Van: Matrix Computations. Third edition..Johns Hopkins University Press, Baltimore, London 1996. MR 1417720
Reference: [19] Hautus, M.: Stabilization controllability and observability of linear autonomous systems..In: Proc. Indagationes Mathematicae 73, Elsevier 1970, pp. 448-455. MR 0289170, 10.1016/s1385-7258(70)80049-x
Reference: [20] Hou, M.: Controllability and elimination of impulsive modes in descriptor systems..IEEE Trans. Automat. Control 49 (2004), 1723-1729. MR 2091322, 10.1016/s1385-7258(70)80049-x
Reference: [21] Ishihara, J. Y., Terra, M. H.: Impulse controllability and observability of rectangular descriptor systems..IEEE Trans. Automat. Control 46 (2001), 991-994. Zbl 1007.93006, MR 1836508, 10.1109/9.928613
Reference: [22] Karampetakis, N., Jones, J., Antoniou, E.: Forward, backward, and symmetric solutions of discrete ARMA representations..Circuits Syst. Signal Process. 20 (2001), 89-109. MR 1820533, 10.1007/bf01204924
Reference: [23] Kumar, A., Daoutidis, P.: Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes. MR 1681229
Reference: [24] Kunkel, P., Mehrmann, V. .L.: Differential-algebraic Equations: Analysis and Numerical Solution..Europ. Math. Society, Zürich 2006. MR 2225970, 10.4171/017
Reference: [25] Mishra, V. K., Tomar, N. K.: On complete and strong controllability for rectangular descriptor systems..Circuits Syst. Signal Process. 35 (2016), 1395-1406. MR 3465880, 10.1007/s00034-015-0111-8
Reference: [26] Mishra, V. K., Tomar, N. K., Gupta, M. K.: On controllability and normalizability for linear descriptor systems..J. Control Automat. Electr. Syst. 27 (2016), 19-28. 10.1007/s40313-015-0218-y
Reference: [27] Piziak, R., Odell, P. L.: Matrix Theory: From Generalized Inverses to Jordan Form..CRC Press 2007. MR 2292386
Reference: [28] Stefanovski, J.: Transformation of optimal control problems of descriptor systems into problems with state-space systems..Kybernetika 48 (2012), 1156-1179. MR 3052879
Reference: [29] Verghese, G. C., Levy, B. C., Kailath, T.: A generalized state-space for singular systems..IEEE Trans. Automat. Control 26 (1981), 811-831. MR 0635842, 10.1109/tac.1981.1102763
Reference: [30] Yip, E., Sincovec, R.: Solvability, controllability, and observability of continuous descriptor systems..IEEE Trans. Automat. Control 26 (1981), 702-707. MR 0630799, 10.1109/tac.1981.1102699
Reference: [31] Zhang, Q., Liu, C., Zhang, X.: Complexity, Analysis and Control of Singular Biological Systems. MR 3014673
Reference: [32] Zubova, S. P.: On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints..Automat. Remote Control 72 (2011), 23-37. MR 2808551, 10.1134/s0005117911010036
.

Files

Files Size Format View
Kybernetika_53-2017-5_5.pdf 290.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo