Previous |  Up |  Next

Article

Title: Estimation of vibration frequencies of linear elastic membranes (English)
Author: Sabatini, Luca
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 1
Year: 2018
Pages: 37-53
Summary lang: English
.
Category: math
.
Summary: The free motion of a thin elastic linear membrane is described, in a simplyfied model, by a second order linear homogeneous hyperbolic system of partial differential equations whose spatial part is the Laplace Beltrami operator acting on a Riemannian 2-dimensional manifold with boundary. We adapt the estimates of the spectrum of the Laplacian obtained in the last years by several authors for compact closed Riemannian manifolds. To make so, we use the standard technique of the doubled manifold to transform a Riemannian manifold with nonempty boundary $(M, \partial M, g)$ to a compact Riemannian manifold $(M\sharp M, \widetilde g)$ without boundary. An easy numerical investigation on a concrete semi-ellipsoidic membrane with clamped boundary tests the sharpness of the method. (English)
Keyword: membrane
Keyword: Laplacian
Keyword: estimation of frequencies
MSC: 53C20
MSC: 53C21
MSC: 58C40
MSC: 74K15
idZBL: Zbl 06861541
idMR: MR3763981
DOI: 10.21136/AM.2018.0316-16
.
Date available: 2018-03-13T06:24:56Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147113
.
Reference: [1] Antman, S. S.: Ordinary differential equations of nonlinear elasticity. I: Foundations of the theories of nonlinearly elastic rods and shells.Arch. Ration. Mech. Anal. 61 (1976), 307-351. Zbl 0354.73046, MR 0418580, 10.1007/BF00250722
Reference: [2] Carroll, M. M., Naghdi, P. M.: The influence of the reference geometry on the response of elastic shells.Arch. Ration. Mech. Anal. 48 (1972), 302-318. Zbl 0283.73034, MR 0356661, 10.1007/BF00250856
Reference: [3] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications.Math. Z. 143 (1975), 289-297. Zbl 0329.53035, MR 0378001, 10.1007/BF01214381
Reference: [4] Ericksen, J. L., Truesdell, C.: Exact theory of stress and strain in rods and shells.Arch. Ration. Mech. Anal. 1 (1958), 295-323. Zbl 0081.39303, MR 0099135, 10.1007/BF00298012
Reference: [5] Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry.Universitext, Springer, Berlin (2004). Zbl 1068.53001, MR 2088027, 10.1007/978-3-642-18855-8
Reference: [6] Jost, J.: Riemannian Geometry and Geometric Analysis.Universitext, Springer, Berlin (2011). Zbl 1227.53001, MR 2829653, 10.1007/978-3-642-21298-7
Reference: [7] Marsden, J. E., Hughes, T. J. R.: Mathematical Foundations of Elasticity.Dover Publications, New York (1994). Zbl 0545.73031, MR 1262126
Reference: [8] Naghdi, P. M.: The theory of shells and plates.Handbook der Physik, vol. VIa/2 C. Truesdell Springer, Berlin (1972), 425-640. MR 0763159
Reference: [9] Sabatini, L.: Estimations of the topological invariants and of the spectrum of the Laplacian for Riemannian manifolds with boundary.Submitted to Result. Math. (2017). MR 1362899
Reference: [10] Simo, J. C., Fox, D. D.: On a stress resultant geometrically exact shell model. I: Formulation and optimal parametrization.Comput. Methods Appl. Mech. Eng. 72 (1989), 267-304. Zbl 0692.73062, MR 0989670, 10.1016/0045-7825(89)90002-9
Reference: [11] Simo, J. C., Fox, D. D., Rifai, M. S.: On a stress resultant geometrically exact shell model. II: The linear theory; computational aspects.Comput. Methods Appl. Mech. Eng. 73 (1989), 53-92. Zbl 0724.73138, MR 0992737, 10.1016/0045-7825(89)90098-4
Reference: [12] Yang, P. C., Yau, S.-T.: Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 7 (1980), 55-63. Zbl 0446.58017, MR 0577325
.

Files

Files Size Format View
AplMat_63-2018-1_3.pdf 337.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo