Title:
|
Fundamental groupoids of digraphs and graphs (English) |
Author:
|
Grigor'yan, Alexander |
Author:
|
Jimenez, Rolando |
Author:
|
Muranov, Yuri |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
35-65 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce the notion of fundamental groupoid of a digraph and prove its basic properties. In particular, we obtain a product theorem and an analogue of the Van Kampen theorem. Considering the category of (undirected) graphs as the full subcategory of digraphs, we transfer the results to the category of graphs. As a corollary we obtain the corresponding results for the fundamental groups of digraphs and graphs. We give an application to graph coloring. (English) |
Keyword:
|
digraph |
Keyword:
|
fundamental group |
Keyword:
|
fundamental groupoid |
Keyword:
|
product of graphs |
MSC:
|
05C25 |
MSC:
|
05C38 |
MSC:
|
05C76 |
MSC:
|
20L05 |
MSC:
|
57M15 |
idZBL:
|
Zbl 06861566 |
idMR:
|
MR3783584 |
DOI:
|
10.21136/CMJ.2018.0683-15 |
. |
Date available:
|
2018-03-19T10:24:41Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147120 |
. |
Reference:
|
[1] Atkin, R. H.: An algebra for patterns on a complex I.Int. J. Man-Mach. Stud. 6 (1974), 285-307. MR 0424293, 10.1016/S0020-7373(74)80024-6 |
Reference:
|
[2] Atkin, R. H.: An algebra for patterns on a complex II.Int. J. Man-Mach. Stud. 8 (1976), 483-498. MR 0574079, 10.1016/S0020-7373(78)80015-7 |
Reference:
|
[3] Babson, E., Barcelo, H., Longueville, M. de, Laubenbacher, R.: Homotopy theory of graphs.J. Algebr. Comb. 24 (2006), 31-44. Zbl 1108.05030, MR 2245779, 10.1007/s10801-006-9100-0 |
Reference:
|
[4] Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, C.: Foundations of a connectivity theory for simplicial complexes.Adv. Appl. Math. 26 (2001), 97-128. Zbl 0984.57014, MR 1808443, 10.1006/aama.2000.0710 |
Reference:
|
[5] Brown, R.: Topology and Groupoids.BookSurge, Charleston (2006). Zbl 1093.55001, MR 2273730 |
Reference:
|
[6] Dimakis, A., Müller-Hoissen, F.: Differential calculus and gauge theory on finite sets.J. Phys. A, Math. Gen. 27 (1994), 3159-3178. Zbl 0843.58004, MR 1282159, 10.1088/0305-4470/27/9/028 |
Reference:
|
[7] Dimakis, A., Müller-Hoissen, F.: Discrete differential calculus: Graphs, topologies, and gauge theory.J. Math. Phys. 35 (1994), 6703-6735. Zbl 0822.58004, MR 1303075, 10.1063/1.530638 |
Reference:
|
[8] Grigor'yan, A., Lin, Y., Muranov, Y., Yau, S.-T.: Homotopy theory for digraphs.Pure Appl. Math. Q. 10 (2014), 619-674. Zbl 1312.05063, MR 3324763, 10.4310/PAMQ.2014.v10.n4.a2 |
Reference:
|
[9] Grigor'yan, A., Lin, Y., Muranov, Y., Yau, S.-T.: Cohomology of digraphs and (undirected) graphs.Asian J. Math. 19 (2015), 887-931. Zbl 1329.05132, MR 3431683, 10.4310/AJM.2015.v19.n5.a5 |
Reference:
|
[10] Grigor'yan, A., Muranov, Y. V., Yau, S.-T.: Graphs associated with simplicial complexes.Homology Homotopy Appl. 16 (2014), 295-311. Zbl 1297.05269, MR 3211747, 10.4310/HHA.2014.v16.n1.a16 |
Reference:
|
[11] Hatcher, A.: Algebraic Topology.Cambridge University Press, Cambridge (2002). Zbl 1044.55001, MR 1867354 |
Reference:
|
[12] Hell, P., Nešetřil, J.: Graphs and Homomorphisms.Oxford Lecture Series in Mathematics and Its Applications 28, Oxford University Press, Oxford (2004). Zbl 1062.05139, MR 2089014, 10.1093/acprof:oso/9780198528173.001.0001 |
Reference:
|
[13] Spanier, E. H.: Algebraic Topology.Springer, Berlin (1995). Zbl 0810.55001, MR 1325242, 10.1007/978-1-4684-9322-1 |
. |