Previous |  Up |  Next

Article

Title: Fundamental groupoids of digraphs and graphs (English)
Author: Grigor'yan, Alexander
Author: Jimenez, Rolando
Author: Muranov, Yuri
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 35-65
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of fundamental groupoid of a digraph and prove its basic properties. In particular, we obtain a product theorem and an analogue of the Van Kampen theorem. Considering the category of (undirected) graphs as the full subcategory of digraphs, we transfer the results to the category of graphs. As a corollary we obtain the corresponding results for the fundamental groups of digraphs and graphs. We give an application to graph coloring. (English)
Keyword: digraph
Keyword: fundamental group
Keyword: fundamental groupoid
Keyword: product of graphs
MSC: 05C25
MSC: 05C38
MSC: 05C76
MSC: 20L05
MSC: 57M15
idZBL: Zbl 06861566
idMR: MR3783584
DOI: 10.21136/CMJ.2018.0683-15
.
Date available: 2018-03-19T10:24:41Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147120
.
Reference: [1] Atkin, R. H.: An algebra for patterns on a complex I.Int. J. Man-Mach. Stud. 6 (1974), 285-307. MR 0424293, 10.1016/S0020-7373(74)80024-6
Reference: [2] Atkin, R. H.: An algebra for patterns on a complex II.Int. J. Man-Mach. Stud. 8 (1976), 483-498. MR 0574079, 10.1016/S0020-7373(78)80015-7
Reference: [3] Babson, E., Barcelo, H., Longueville, M. de, Laubenbacher, R.: Homotopy theory of graphs.J. Algebr. Comb. 24 (2006), 31-44. Zbl 1108.05030, MR 2245779, 10.1007/s10801-006-9100-0
Reference: [4] Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, C.: Foundations of a connectivity theory for simplicial complexes.Adv. Appl. Math. 26 (2001), 97-128. Zbl 0984.57014, MR 1808443, 10.1006/aama.2000.0710
Reference: [5] Brown, R.: Topology and Groupoids.BookSurge, Charleston (2006). Zbl 1093.55001, MR 2273730
Reference: [6] Dimakis, A., Müller-Hoissen, F.: Differential calculus and gauge theory on finite sets.J. Phys. A, Math. Gen. 27 (1994), 3159-3178. Zbl 0843.58004, MR 1282159, 10.1088/0305-4470/27/9/028
Reference: [7] Dimakis, A., Müller-Hoissen, F.: Discrete differential calculus: Graphs, topologies, and gauge theory.J. Math. Phys. 35 (1994), 6703-6735. Zbl 0822.58004, MR 1303075, 10.1063/1.530638
Reference: [8] Grigor'yan, A., Lin, Y., Muranov, Y., Yau, S.-T.: Homotopy theory for digraphs.Pure Appl. Math. Q. 10 (2014), 619-674. Zbl 1312.05063, MR 3324763, 10.4310/PAMQ.2014.v10.n4.a2
Reference: [9] Grigor'yan, A., Lin, Y., Muranov, Y., Yau, S.-T.: Cohomology of digraphs and (undirected) graphs.Asian J. Math. 19 (2015), 887-931. Zbl 1329.05132, MR 3431683, 10.4310/AJM.2015.v19.n5.a5
Reference: [10] Grigor'yan, A., Muranov, Y. V., Yau, S.-T.: Graphs associated with simplicial complexes.Homology Homotopy Appl. 16 (2014), 295-311. Zbl 1297.05269, MR 3211747, 10.4310/HHA.2014.v16.n1.a16
Reference: [11] Hatcher, A.: Algebraic Topology.Cambridge University Press, Cambridge (2002). Zbl 1044.55001, MR 1867354
Reference: [12] Hell, P., Nešetřil, J.: Graphs and Homomorphisms.Oxford Lecture Series in Mathematics and Its Applications 28, Oxford University Press, Oxford (2004). Zbl 1062.05139, MR 2089014, 10.1093/acprof:oso/9780198528173.001.0001
Reference: [13] Spanier, E. H.: Algebraic Topology.Springer, Berlin (1995). Zbl 0810.55001, MR 1325242, 10.1007/978-1-4684-9322-1
.

Files

Files Size Format View
CzechMathJ_68-2018-1_3.pdf 420.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo