Previous |  Up |  Next

Article

Title: When a line graph associated to annihilating-ideal graph of a lattice is planar or projective (English)
Author: Parsapour, Atossa
Author: Ahmad Javaheri, Khadijeh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 19-34
Summary lang: English
.
Category: math
.
Summary: Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb {A} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak {L}(\mathbb {A} G(L))$, is a planar or projective graph. (English)
Keyword: annihilating-ideal graph
Keyword: lattice
Keyword: line graph
Keyword: planar graph
Keyword: projective graph
MSC: 05C10
MSC: 05C75
MSC: 06B10
idZBL: Zbl 06861565
idMR: MR3783583
DOI: 10.21136/CMJ.2018.0635-15
.
Date available: 2018-03-19T10:24:13Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147119
.
Reference: [1] Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F.: The annihilating-ideal graph of a lattice.Georgian Math. J. 23 (2016), 1-7. Zbl 1332.05067, MR 3466579, 10.1515/gmj-2015-0031
Reference: [2] Anderson, D. F., Axtell, M. C., Stickles, J. A.: Zero-divisor graphs in commutative rings.Commutative Algebra, Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. Zbl 1225.13002, MR 2762487, 10.1007/978-1-4419-6990-3_2
Reference: [3] Archdeacon, D.: A Kuratowski theorem for the projective plane.J. Graph Theory 5 (1981), 243-246. Zbl 0464.05028, MR 0625065, 10.1002/jgt.3190050305
Reference: [4] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [5] Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings I.J. Algebra Appl. 10 (2011), 727-739. Zbl 1276.13002, MR 2834112, 10.1142/S0219498811004896
Reference: [6] Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings II.J. Algebra Appl. 10 (2011), 741-753. Zbl 1276.13003, MR 2834113, 10.1142/S0219498811004902
Reference: [7] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications.American Elsevier Publishing, New York (1976). Zbl 1226.05083, MR 0411988, 10.1007/978-1-349-03521-2
Reference: [8] Bouchet, A.: Orientable and nonorientable genus of the complete bipartite graph.J. Comb. Theory, Ser. B 24 (1978), 24-33. Zbl 0311.05104, MR 0479731, 10.1016/0095-8956(78)90073-4
Reference: [9] Chiang-Hsieh, H.-J., Lee, P.-F., Wang, H.-J.: The embedding of line graphs associated to the zero-divisor graphs of commutative rings.Isr. J. Math. 180 (2010), 193-222. Zbl 1207.13005, MR 2735063, 10.1007/s11856-010-0101-2
Reference: [10] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge (2002). Zbl 1002.06001, MR 1902334, 10.1017/CBO9780511809088
Reference: [11] Glover, H. H., Huneke, J. P., Wang, C. S.: 103 graphs that are irreducible for the projective plane.J. Comb. Theory, Ser. B 27 (1979), 332-370. Zbl 0352.05027, MR 0554298, 10.1016/0095-8956(79)90022-4
Reference: [12] Godsil, C., Royle, G.: Algebraic Graph Theory.Graduate Texts in Mathematics 207, Springer, New York (2001). Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [13] Khashyarmanesh, K., Khorsandi, M. R.: Projective total graphs of commutative rings.Rocky Mt. J. Math. 43 (2013), 1207-1213. Zbl 1284.13034, MR 3105318, 10.1216/RMJ-2013-43-4-1207
Reference: [14] Massey, W. S.: Algebraic Topology: An Introduction.Graduate Texts in Mathematics 56, Springer, New York (1977). Zbl 0361.55002, MR 0448331
Reference: [15] Nation, J. B.: Notes on Lattice Theory.(1991)--2009. Available at http://www.math.hawaii.edu/ {jb/books.html}.
Reference: [16] Ringel, G.: Map Color Theorem.Die Grundlehren der mathematischen Wissenschaften 209, Springer, Berlin (1974). Zbl 0287.05102, MR 0349461, 10.1007/978-3-642-65759-7
Reference: [17] Roth, J., Myrvold, W.: Simpler projective plane embedding.Ars Comb. 75 (2005), 135-155. Zbl 1072.05045, MR 2133216
Reference: [18] Sedláček, J.: Some properties of interchange graphs.Theory Graphs Appl Proc. Symp. Smolenice, 1963, Czechoslovak Acad. Sci., Praha (1964), 145-150. Zbl 0156.44202, MR 0173255
Reference: [19] White, A. T.: Graphs, Groups and Surfaces.North-Holland Mathematics Studies 8, North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). Zbl 0268.05102, MR 0340026
.

Files

Files Size Format View
CzechMathJ_68-2018-1_2.pdf 356.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo