Previous |  Up |  Next

Article

Title: Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces (English)
Author: Pradolini, Gladis
Author: Recchi, Jorgelina
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 77-94
Summary lang: English
.
Category: math
.
Summary: Let $\mu $ be a nonnegative Borel measure on $\mathbb R^d$ satisfying that $\mu (Q)\le l(Q)^n$ for every cube $Q\subset \mathbb R^n$, where $l(Q)$ is the side length of the cube $Q$ and $0<n\leq d$. \endgraf We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function $B$ in the context of non-homogeneous spaces related to the measure $\mu $. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012). (English)
Keyword: non-homogeneous space
Keyword: generalized fractional operator
Keyword: weight
MSC: 42B25
idZBL: Zbl 06861568
idMR: MR3783586
DOI: 10.21136/CMJ.2018.0337-16
.
Date available: 2018-03-19T10:25:34Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147122
.
Reference: [1] Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces.Ann. Acad. Sci. Fenn., Math. 39 (2014), 23-50. Zbl 1297.42029, MR 3186804, 10.5186/aasfm.2014.3904
Reference: [2] Bernardis, A., Hartzstein, S., Pradolini, G.: Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type.J. Math. Anal. Appl. 322 (2006), 825-846. Zbl 1129.42395, MR 2250620, 10.1016/j.jmaa.2005.09.051
Reference: [3] Bernardis, A. L., Lorente, M., Riveros, M. S.: Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions.Math. Inequal. Appl. 14 (2011), 881-895. Zbl 1245.42009, MR 2884902, 10.7153/mia-14-73
Reference: [4] Bernardis, A. L., Pradolini, G., Lorente, M., Riveros, M. S.: Composition of fractional Orlicz maximal operators and $A_1$-weights on spaces of homogeneous type.Acta Math. Sin., Engl. Ser. 26 (2010), 1509-1518. Zbl 1202.42035, MR 2661130, 10.1007/s10114-010-8445-4
Reference: [5] Cruz-Uribe, D., Fiorenza, A.: The $A_\infty$ property for Young functions and weighted norm inequalities.Houston J. Math. 28 (2002), 169-182. Zbl 1041.42009, MR 1876947
Reference: [6] Cruz-Uribe, D., Fiorenza, A.: Endpoint estimates and weighted norm inequalities for commutators of fractional integrals.Publ. Mat., Barc. 47 (2003), 103-131. Zbl 1035.42015, MR 1970896, 10.5565/PUBLMAT_47103_05
Reference: [7] Cruz-Uribe, D., Pérez, C.: On the two-weight problem for singular integral operators.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 821-849. Zbl 1072.42010, MR 1991004
Reference: [8] García-Cuerva, J., Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces.Indiana Univ. Math. J. 50 (2001), 1241-1280. Zbl 1023.42012, MR 1871355, 10.1512/iumj.2001.50.2100
Reference: [9] Gorosito, O., Pradolini, G., Salinas, O.: Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type.Acta Math. Sin., Engl. Ser. 23 (2007), 1813-1826. Zbl 1134.42319, MR 2352296, 10.1007/s10114-005-0741-z
Reference: [10] Gorosito, O., Pradolini, G., Salinas, O.: Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof.Rev. Unión Mat. Argent. 53 (2012), 25-27. Zbl 1256.42030, MR 2987152
Reference: [11] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). Zbl 0634.26008, MR 0944909
Reference: [12] Lorente, M., Martell, J. M., Riveros, M. S., Torre, A. de la: Generalized Hörmander's conditions, commutators and weights.J. Math. Anal. Appl. 342 (2008), 1399-1425. Zbl 1141.42013, MR 2445285, 10.1016/j.jmaa.2008.01.003
Reference: [13] Lorente, M., Riveros, M. S., Torre, A. de la: Weighted estimates for singular integral operators satisfying Hörmander's conditions of Young type.J. Fourier Anal. Appl. 11 (2005), 497-509. Zbl 1096.42006, MR 2182632, 10.1007/s00041-005-4039-4
Reference: [14] Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for nondoubling measures.Duke Math. J. 102 (2000), 533-565. Zbl 0964.42009, MR 1756109, 10.1215/S0012-7094-00-10238-4
Reference: [15] Meng, Y., Yang, D.: Boundedness of commutators with Lipschitz functions in non-homogeneous spaces.Taiwanese J. Math. 10 (2006), 1443-1464. Zbl 1131.47034, MR 2275138, 10.11650/twjm/1500404567
Reference: [16] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1997 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469
Reference: [17] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1998 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312
Reference: [18] Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators.Indiana Univ. Math. J. 43 (1994), 663-683. Zbl 0809.42007, MR 1291534, 10.1512/iumj.1994.43.43028
Reference: [19] Pérez, C.: Weighted norm inequalities for singular integral operators.J. Lond. Math. Soc., II. Ser. 49 (1994), 296-308. Zbl 0797.42010, MR 1260114, 10.1112/jlms/49.2.296
Reference: [20] Pérez, C.: Endpoint estimates for commutators of singular integral operators.J. Funct. Anal. 128 (1995), 163-185. Zbl 0831.42010, MR 1317714, 10.1006/jfan.1995.1027
Reference: [21] Pérez, C.: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $L^p$-spaces with different weights.Proc. Lond. Math. Soc., III. Ser. 71 (1995), 135-157. Zbl 0829.42019, MR 1327936, 10.1112/plms/s3-71.1.135
Reference: [22] Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function.J. Fourier Anal. Appl. 3 (1997), 743-756. Zbl 0894.42006, MR 1481632, 10.1007/BF02648265
Reference: [23] Pérez, C., Pradolini, G.: Sharp weighted endpoint estimates for commutators of singular integrals.Mich. Math. J. 49 (2001), 23-37. Zbl 1010.42007, MR 1827073, 10.1307/mmj/1008719033
Reference: [24] Pradolini, G.: Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators.J. Math. Anal. Appl. 367 (2010), 640-656. Zbl 1198.42011, MR 2607287, 10.1016/j.jmaa.2010.02.008
Reference: [25] Pradolini, G., Salinas, O.: Maximal operators on spaces of homogeneous type.Proc. Am. Math. Soc. 132 (2004), 435-441. Zbl 1044.42021, MR 2022366, 10.1090/S0002-9939-03-07079-5
Reference: [26] Tolsa, X.: BMO, $H^1$, and Calderón-Zygmund operators for non doubling measures.Math. Ann. 319 (2001), 89-149. Zbl 0974.42014, MR 1812821, 10.1007/s002080000144
Reference: [27] Yang, D., Yang, D., Hu, G.: The Hardy Space $H^1$ with Non-doubling Measures and Their Applications.Lecture Notes in Mathematics 2084, Springer, Cham (2013). Zbl 1316.42002, MR 3157341, 10.1007/978-3-319-00825-7
Reference: [28] Wang, W., Tan, C., Lou, Z.: A note on weighted norm inequalities for fractional maximal operators with non-doubling measures.Taiwanese J. Math. 16 (2012), 1409-1422. Zbl 1266.42050, MR 2951145, 10.11650/twjm/1500406741
.

Files

Files Size Format View
CzechMathJ_68-2018-1_5.pdf 353.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo