Title:
|
Generalized derivations acting on multilinear polynomials in prime rings (English) |
Author:
|
Dhara, Basudeb |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
95-119 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a noncommutative prime ring of characteristic different from $2$ with Utumi quotient ring $U$ and extended centroid $C$, let $F$, $G$ and $H$ be three generalized derivations of $R$, $I$ an ideal of $R$ and $f(x_1,\ldots ,x_n)$ a multilinear polynomial over $C$ which is not central valued on $R$. If $$F(f(r))G(f(r))=H(f(r)^2)$$ for all $r=(r_1,\ldots ,r_n) \in I^n$, then one of the following conditions holds: \item {(1)} there exist $a\in C$ and $b\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=xab$ for all $x\in R$; \item {(2)} there exist $a, b\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$, with $ab\in C$; \item {(3)} there exist $b\in C$ and $a\in U$ such that $F(x)=ax$, $G(x)=bx$ and $H(x)=abx$ for all $x\in R$; \item {(4)} $f(x_1,\ldots ,x_n)^2$ is central valued on $R$ and one of the following conditions holds: \itemitem {(a)} there exist $a,b,p,p'\in U$ such that $F(x)=ax$, $G(x)=xb$ and $H(x)=px+xp'$ for all $x\in R$, with $ab=p+p'$; \itemitem {(b)} there exist $a,b,p,p'\in U$ such that $F(x)=xa$, $G(x)=bx$ and $H(x)=px+xp'$ for all $x\in R$, with $p+p'=ab\in C$. (English) |
Keyword:
|
prime ring |
Keyword:
|
derivation |
Keyword:
|
generalized derivation |
Keyword:
|
extended centroid |
Keyword:
|
Utumi quotient ring |
MSC:
|
16N60 |
MSC:
|
16W25 |
idZBL:
|
Zbl 06861569 |
idMR:
|
MR3783587 |
DOI:
|
10.21136/CMJ.2017.0352-16 |
. |
Date available:
|
2018-03-19T10:26:03Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147123 |
. |
Reference:
|
[1] Albaş, E.: Generalized derivations on ideals of prime rings.Miskolc Math. Notes 14 (2013), 3-9. Zbl 1289.16082, MR 3070683, 10.18514/MMN.2013.499 |
Reference:
|
[2] Ali, S., Huang, S.: On generalized Jordan $(\alpha,\beta)$-derivations that act as homomorphisms or anti-homomorphisms.J. Algebra Comput. Appl. (electronic only) 1 (2011), 13-19. Zbl 1291.16038, MR 2862508 |
Reference:
|
[3] Argaç, N., Filippis, V. De: Actions of generalized derivations on multilinear polynomials in prime rings.Algebra Colloq. 18, Spec. Iss. 1 (2011), 955-964. Zbl 1297.16037, MR 2860377, 10.1142/S1005386711000836 |
Reference:
|
[4] Asma, A., Rehman, N., Shakir, A.: On Lie ideals with derivations as homomorphisms and anti-homomorphisms.Acta Math. Hungar 101 (2003), 79-82. Zbl 1053.16025, MR 2011464, 10.1023/B:AMHU.0000003893.61349.98 |
Reference:
|
[5] Bell, H. E., Kappe, L. C.: Rings in which derivations satisfy certain algebraic conditions.Acta Math. Hung. 53 (1989), 339-346 \99999DOI99999 10.1007/BF01953371 \goodbreak. Zbl 0705.16021, MR 1014917, 10.1007/BF01953371 |
Reference:
|
[6] Bergen, J., Herstein, I. N., Keer, J. W.: Lie ideals and derivations of prime rings.J. Algebra 71 (1981), 259-267. Zbl 0463.16023, MR 0627439, 10.1016/0021-8693(81)90120-4 |
Reference:
|
[7] Carini, L., Filippis, V. De, Scudo, G.: Identities with product of generalized derivations of prime rings.Algebra Colloq. 20 (2013), 711-720. Zbl 1285.16036, MR 3116800, 10.1142/S1005386713000680 |
Reference:
|
[8] Chuang, C.-L.: The additive subgroup generated by a polynomial.Isr. J. Math. 59 (1987), 98-106. Zbl 0631.16015, MR 0923664, 10.1007/BF02779669 |
Reference:
|
[9] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.2307/2046841 |
Reference:
|
[10] Filippis, V. De: Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals.Acta Math. Sin., Engl. Ser. 25 (2009), 1965-1974. Zbl 1192.16042, MR 2578635, 10.1007/s10114-009-7343-0 |
Reference:
|
[11] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials.Commun. Algebra 40 (2012), 1918-1932. Zbl 1258.16043, MR 2945689, 10.1080/00927872.2011.553859 |
Reference:
|
[12] Filippis, V. De, Scudo, G.: Generalized derivations which extend the concept of Jordan homomorphism.Publ. Math. 86 (2015), 187-212. Zbl 1341.16040, MR 3300586, 10.5486/PMD.2015.7070 |
Reference:
|
[13] Dhara, B.: Derivations with Engel conditions on multilinear polynomials in prime rings.Demonstr. Math. 42 (2009), 467-478. Zbl 1188.16037, MR 2554943 |
Reference:
|
[14] Dhara, B.: Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings.Beitr. Algebra Geom. 53 (2012), 203-209. Zbl 1242.16039, MR 2890375, 10.1007/s13366-011-0051-9 |
Reference:
|
[15] Dhara, B., Huang, S., Pattanayak, A.: Generalized derivations and multilinear polynomials in prime rings.Bull. Malays. Math. Sci. Soc. 36 (2013), 1071-1081. Zbl 1281.16046, MR 3108796 |
Reference:
|
[16] Dhara, B., Rehman, N. U., Raza, M. A.: Lie ideals and action of generalized derivations in rings.Miskolc Math. Notes 16 (2015), 769-779. Zbl 1349.16068, MR 3454141, 10.18514/MMN.2015.1343 |
Reference:
|
[17] Dhara, B., Sahebi, S., Rehmani, V.: Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals.Math. Slovaca 65 (2015), 963-974. Zbl 06534094, MR 3433047, 10.1515/ms-2015-0065 |
Reference:
|
[18] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. Zbl 0355.17005, MR 0382379, 10.2140/pjm.1975.60.49 |
Reference:
|
[19] Gusić, I.: A note on generalized derivations of prime rings.Glas. Mat., III. Ser. 40 (2005), 47-49. Zbl 1072.16031, MR 2195859, 10.3336/gm.40.1.05 |
Reference:
|
[20] Jacobson, N.: Structure of Rings.American Mathematical Society Colloquium Publications 37, Revised edition American Mathematical Society, Providence (1956). Zbl 0073.02002, MR 0222106, 10.1090/coll/037 |
Reference:
|
[21] Kharchenko, V. K.: Differential identities of prime rings.Algebra Logic 17 (1978), 155-168. English. Russian original translation from Algebra Logika 17 1978 220-238. Zbl 0423.16011, MR 0541758, 10.1007/BF01670115 |
Reference:
|
[22] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems.Pac. J. Math. 134 (1988), 275-297. Zbl 0614.16028, MR 0961236, 10.2140/pjm.1988.134.275 |
Reference:
|
[23] Lanski, C.: An Engel condition with derivation.Proc. Am. Math. Soc. 118 (1993), 731-734. Zbl 0821.16037, MR 1132851, 10.2307/2160113 |
Reference:
|
[24] Lee, T.-K.: Semiprime rings with differential identities.Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. Zbl 0769.16017, MR 1166215 |
Reference:
|
[25] Lee, T.-K.: Generalized derivations of left faithful rings.Commun. Algebra 27 (1999), 4057-4073. Zbl 0946.16026, MR 1700189, 10.1080/00927879908826682 |
Reference:
|
[26] Lee, P.-H., Lee, T.-K.: Derivations with Engel conditions on multilinear polynomials.Proc. Am. Math. Soc. 124 (1996), 2625-2629. Zbl 0859.16031, MR 1327023, 10.1090/S0002-9939-96-03351-5 |
Reference:
|
[27] Leron, U.: Nil and power central polynomials in rings.Trans. Am. Math. Soc. 202 (1975), 97-103. Zbl 0297.16010, MR 0354764, 10.2307/1997300 |
Reference:
|
[28] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. Zbl 0175.03102, MR 0238897, 10.1016/0021-8693(69)90029-5 |
Reference:
|
[29] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1957), 1093-1100. Zbl 0082.03003, MR 0095863, 10.2307/2032686 |
Reference:
|
[30] Rehman, N. U.: On generalized derivations as homomorphisms and anti-homomorphisms.Glas. Mat., III. Ser. 39 (2004), 27-30. Zbl 1047.16019, MR 2055383, 10.3336/gm.39.1.03 |
Reference:
|
[31] Wang, Y., You, H.: Derivations as homomorphisms or anti-homomorphisms on Lie ideals.Acta Math. Sin., Engl. Ser. 23 (2007), 1149-1152. Zbl 1124.16031, MR 2319944, 10.1007/s10114-005-0840-x |
. |