Title:
|
Recognition of some families of finite simple groups by order and set of orders of vanishing elements (English) |
Author:
|
Khatami, Maryam |
Author:
|
Babai, Azam |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
121-130 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group. An element $g\in G$ is called a vanishing element if there exists an irreducible complex character $\chi $ of $G$ such that $\chi (g)=0$. Denote by ${\rm Vo}(G)$ the set of orders of vanishing elements of $G$. Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let $G$ be a finite group and $M$ a finite nonabelian simple group such that ${\rm Vo}(G)={\rm Vo}(M)$ and $|G|=|M|$. Then $G\cong M$. We answer in affirmative this conjecture for $M=Sz(q)$, where $q=2^{2n+1}$ and either $q-1$, $q-\sqrt {2q}+1$ or $q+\sqrt {2q}+1$ is a prime number, and $M=F_4(q)$, where $q=2^n$ and either $q^4+1$ or $q^4-q^2+1$ is a prime number. (English) |
Keyword:
|
finite simple groups |
Keyword:
|
vanishing element |
Keyword:
|
vanishing prime graph |
MSC:
|
20C15 |
MSC:
|
20D05 |
idZBL:
|
Zbl 06861570 |
idMR:
|
MR3783588 |
DOI:
|
10.21136/CMJ.2018.0355-16 |
. |
Date available:
|
2018-03-19T10:26:32Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147124 |
. |
Reference:
|
[1] Chen, G.: Further reflections on Thompson's conjecture.J. Algebra 218 (1999), 276-285. Zbl 0931.20020, MR 1704687, 10.1006/jabr.1998.7839 |
Reference:
|
[2] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219 |
Reference:
|
[3] Crescenzo, P.: A Diophantine equation which arises in the theory of finite groups.Adv. Math. 17 (1975), 25-29. Zbl 0305.10016, MR 0371812, 10.1016/0001-8708(75)90083-3 |
Reference:
|
[4] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P.: On the vanishing prime graph of finite groups.J. Lond. Math. Soc., II. Ser. 82 (2010), 167-183. Zbl 1203.20024, MR 2669646, 10.1112/jlms/jdq021 |
Reference:
|
[5] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P.: On the vanishing prime graph of solvable groups.J. Group Theory 13 (2010), 189-206. Zbl 1196.20029, MR 2607575, 10.1515/JGT.2009.046 |
Reference:
|
[6] Ghasemabadi, M. F., Iranmanesh, A., Ahanjideh, M.: A new characterization of some families of finite simple groups.Rend. Semin. Mat. Univ. Padova 137 (2017), 57-74. Zbl 06735308, MR 3652868, 10.4171/RSMUP/137-3 |
Reference:
|
[7] Ghasemabadi, M. F., Iranmanesh, A., Mavadatpur, F.: A new characterization of some finite simple groups.Sib. Math. J. 56 (2015), 78-82 English. Russian original translation from Sib. Math. Zh. 56 2015 94-99. Zbl 1318.20012, MR 3407941, 10.1134/S0037446615010073 |
Reference:
|
[8] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69, Academic Press, New York (1976). Zbl 0337.20005, MR 0460423, 10.1515/9783110809237 |
Reference:
|
[9] James, G., Liebeck, M.: Representations and Characters of Groups.Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge (1993). Zbl 0792.20006, MR 1237401, 10.1017/CBO9780511814532 |
Reference:
|
[10] Shi, H., Chen, G. Y.: Relation between $B_p(3)$ and $C_p(3)$ with their order components where $p$ is an odd prime.J. Appl. Math. Inform. 27 (2009), 653-659. |
Reference:
|
[11] Vasil'ev, A. V., Vdovin, E. P.: An adjacency criterion for the prime graph of a finite simple group.Algebra Logic 44 (2005), 381-406 English. Russian original translation from Algebra Logika 44 2005 682-725. Zbl 1104.20018, MR 2213302, 10.1007/s10469-005-0037-5 |
Reference:
|
[12] Williams, J. S.: Prime graph components of finite groups.J. Algebra 69 (1981), 487-513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0 |
Reference:
|
[13] Zhang, J., Li, Z., Shao, C.: Finite groups whose irreducible characters vanish only on elements of prime power order.Int. Electron. J. Algebra 9 (2011), 114-123. Zbl 1259.20010, MR 2753762 |
Reference:
|
[14] Zsigmondy, K.: Zur Theorie der Potenzreste.Monatsh. Math. Phys. 3 (1892), 265-284 German \99999JFM99999 24.0176.02. MR 1546236, 10.1007/BF01692444 |
. |