Title:
|
Group algebras whose groups of normalized units have exponent 4 (English) |
Author:
|
Bovdi, Victor |
Author:
|
Salim, Mohammed |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
141-148 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a full description of locally finite $2$-groups $G$ such that the normalized group of units of the group algebra $FG$ over a field $F$ of characteristic $2$ has exponent $4$. (English) |
Keyword:
|
group of exponent 4 |
Keyword:
|
unit group |
Keyword:
|
modular group algebra |
MSC:
|
16S34 |
MSC:
|
16U60 |
idZBL:
|
Zbl 06861572 |
idMR:
|
MR3783590 |
DOI:
|
10.21136/CMJ.2018.0386-16 |
. |
Date available:
|
2018-03-19T10:27:35Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147126 |
. |
Reference:
|
[1] Bovdi, A. A.: Group Rings.University publishers, Uzgorod (1974), Russian. Zbl 0339.16004, MR 0412282 |
Reference:
|
[2] Bovdi, A.: The group of units of a group algebra of characteristic $p$.Publ. Math. 52 (1998), 193-244. Zbl 0906.16016, MR 1603359 |
Reference:
|
[3] Bovdi, V.: Group algebras whose group of units is powerful.J. Aust. Math. Soc. 87 (2009), 325-328. Zbl 1194.20005, MR 2576568, 10.1017/S1446788709000214 |
Reference:
|
[4] Bovdi, V., Dokuchaev, M.: Group algebras whose involutory units commute.Algebra Colloq. 9 (2002), 49-64. Zbl 1002.20003, MR 1883427 |
Reference:
|
[5] Bovdi, V., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA Lie AlGebras and UNits of group Algebras.Version 3.5.0, 2009, http://www.cs.st-andrews.ac.uk/{alexk/laguna/}. |
Reference:
|
[6] Bovdi, A., Lakatos, P.: On the exponent of the group of normalized units of modular group algebras.Publ. Math. 42 (1993), 409-415. Zbl 0802.16027, MR 1229688 |
Reference:
|
[7] Caranti, A.: Finite $p$-groups of exponent $p^2$ in which each element commutes with its endomorphic images.J. Algebra 97 (1985), 1-13. Zbl 0572.20008, MR 0812164, 10.1016/0021-8693(85)90068-7 |
Reference:
|
[8] GAP: The GAP Group.GAP---Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org. |
Reference:
|
[9] Gupta, N. D., Newman, M. F.: The nilpotency class of finitely generated groups of exponent four.Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin (1974), 330-332. Zbl 0291.20034, MR 0352265, 10.1007/bfb0065183 |
Reference:
|
[10] M. Hall, Jr.: The Theory of Groups.The Macmillan Company, New York (1959). Zbl 0084.02202, MR 0103215 |
Reference:
|
[11] Janko, Z.: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4.J. Algebra 315 (2007), 801-808. Zbl 1127.20018, MR 2351894, 10.1016/j.jalgebra.2007.02.010 |
Reference:
|
[12] Janko, Z.: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4.J. Algebra 321 (2009), 2890-2897. Zbl 1177.20031, MR 2512633, 10.1016/j.jalgebra.2009.03.004 |
Reference:
|
[13] Janko, Z.: Finite $p$-groups of exponent $p^e$ all of whose cyclic subgroups of order $p^e$ are normal.J. Algebra 416 (2014), 274-286. Zbl 1323.20016, MR 3232801, 10.1016/j.jalgebra.2014.05.027 |
Reference:
|
[14] Quick, M.: Varieties of groups of exponent 4.J. Lond. Math. Soc., II. Ser. 60 (1999), 747-756. Zbl 0955.20014, MR 1753811, 10.1112/S0024610799008169 |
Reference:
|
[15] Shalev, A.: Dimension subgroups, nilpotency indices, and the number of generators of ideals in $p$-group algebras.J. Algebra 129 (1990), 412-438. Zbl 0695.16007, MR 1040946, 10.1016/0021-8693(90)90228-G |
Reference:
|
[16] Shalev, A.: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units.J. Lond. Math. Soc., II. Ser. 43 (1991), 23-36. Zbl 0669.16005, MR 1099083, 10.1112/jlms/s2-43.1.23 |
Reference:
|
[17] Vaughan-Lee, M. R., Wiegold, J.: Countable locally nilpotent groups of finite exponent without maximal subgroups.Bull. Lond. Math. Soc. 13 (1981), 45-46. Zbl 0418.20027, MR 0599640, 10.1112/blms/13.1.45 |
. |