Previous |  Up |  Next

Article

Title: Group algebras whose groups of normalized units have exponent 4 (English)
Author: Bovdi, Victor
Author: Salim, Mohammed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 141-148
Summary lang: English
.
Category: math
.
Summary: We give a full description of locally finite $2$-groups $G$ such that the normalized group of units of the group algebra $FG$ over a field $F$ of characteristic $2$ has exponent $4$. (English)
Keyword: group of exponent 4
Keyword: unit group
Keyword: modular group algebra
MSC: 16S34
MSC: 16U60
idZBL: Zbl 06861572
idMR: MR3783590
DOI: 10.21136/CMJ.2018.0386-16
.
Date available: 2018-03-19T10:27:35Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147126
.
Reference: [1] Bovdi, A. A.: Group Rings.University publishers, Uzgorod (1974), Russian. Zbl 0339.16004, MR 0412282
Reference: [2] Bovdi, A.: The group of units of a group algebra of characteristic $p$.Publ. Math. 52 (1998), 193-244. Zbl 0906.16016, MR 1603359
Reference: [3] Bovdi, V.: Group algebras whose group of units is powerful.J. Aust. Math. Soc. 87 (2009), 325-328. Zbl 1194.20005, MR 2576568, 10.1017/S1446788709000214
Reference: [4] Bovdi, V., Dokuchaev, M.: Group algebras whose involutory units commute.Algebra Colloq. 9 (2002), 49-64. Zbl 1002.20003, MR 1883427
Reference: [5] Bovdi, V., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA Lie AlGebras and UNits of group Algebras.Version 3.5.0, 2009, http://www.cs.st-andrews.ac.uk/{alexk/laguna/}.
Reference: [6] Bovdi, A., Lakatos, P.: On the exponent of the group of normalized units of modular group algebras.Publ. Math. 42 (1993), 409-415. Zbl 0802.16027, MR 1229688
Reference: [7] Caranti, A.: Finite $p$-groups of exponent $p^2$ in which each element commutes with its endomorphic images.J. Algebra 97 (1985), 1-13. Zbl 0572.20008, MR 0812164, 10.1016/0021-8693(85)90068-7
Reference: [8] GAP: The GAP Group.GAP---Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org.
Reference: [9] Gupta, N. D., Newman, M. F.: The nilpotency class of finitely generated groups of exponent four.Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin (1974), 330-332. Zbl 0291.20034, MR 0352265, 10.1007/bfb0065183
Reference: [10] M. Hall, Jr.: The Theory of Groups.The Macmillan Company, New York (1959). Zbl 0084.02202, MR 0103215
Reference: [11] Janko, Z.: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4.J. Algebra 315 (2007), 801-808. Zbl 1127.20018, MR 2351894, 10.1016/j.jalgebra.2007.02.010
Reference: [12] Janko, Z.: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4.J. Algebra 321 (2009), 2890-2897. Zbl 1177.20031, MR 2512633, 10.1016/j.jalgebra.2009.03.004
Reference: [13] Janko, Z.: Finite $p$-groups of exponent $p^e$ all of whose cyclic subgroups of order $p^e$ are normal.J. Algebra 416 (2014), 274-286. Zbl 1323.20016, MR 3232801, 10.1016/j.jalgebra.2014.05.027
Reference: [14] Quick, M.: Varieties of groups of exponent 4.J. Lond. Math. Soc., II. Ser. 60 (1999), 747-756. Zbl 0955.20014, MR 1753811, 10.1112/S0024610799008169
Reference: [15] Shalev, A.: Dimension subgroups, nilpotency indices, and the number of generators of ideals in $p$-group algebras.J. Algebra 129 (1990), 412-438. Zbl 0695.16007, MR 1040946, 10.1016/0021-8693(90)90228-G
Reference: [16] Shalev, A.: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units.J. Lond. Math. Soc., II. Ser. 43 (1991), 23-36. Zbl 0669.16005, MR 1099083, 10.1112/jlms/s2-43.1.23
Reference: [17] Vaughan-Lee, M. R., Wiegold, J.: Countable locally nilpotent groups of finite exponent without maximal subgroups.Bull. Lond. Math. Soc. 13 (1981), 45-46. Zbl 0418.20027, MR 0599640, 10.1112/blms/13.1.45
.

Files

Files Size Format View
CzechMathJ_68-2018-1_9.pdf 263.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo