Title:
|
The exceptional set for Diophantine inequality with unlike powers of prime variables (English) |
Author:
|
Ge, Wenxu |
Author:
|
Zhao, Feng |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
149-168 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal {V}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal {V}, N,\delta )$ the number of $v\in \mathcal {V}$ with $v\leq N$ such that the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|<v^{-\delta } $$ has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that $$ E(\mathcal {V}, N,\delta )\ll N^{1+2\delta -{1}/{72}+\varepsilon } $$ for any $\varepsilon >0$. (English) |
Keyword:
|
Davenport-Heilbronn method |
Keyword:
|
prime varaible |
Keyword:
|
exceptional set |
Keyword:
|
Diophantine inequality |
MSC:
|
11D75 |
MSC:
|
11P32 |
MSC:
|
11P55 |
idZBL:
|
Zbl 06861573 |
idMR:
|
MR3783591 |
DOI:
|
10.21136/CMJ.2018.0388-16 |
. |
Date available:
|
2018-03-19T10:27:59Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147127 |
. |
Reference:
|
[1] Cook, R. J., Fox, A.: The values of ternary quadratic forms at prime arguments.Mathematika 48 (2001), 137-149. Zbl 1035.11010, MR 1996366, 10.1112/S002557930001439X |
Reference:
|
[2] Cook, R. J., Harman, G.: The values of additive forms at prime arguments.Rocky Mt. J. Math. 36 (2006), 1153-1164. Zbl 1140.11048, MR 2274889, 10.1216/rmjm/1181069409 |
Reference:
|
[3] Davenport, H.: Analytic Methods for Diophantine Equations and Diophantine Inequalities.The University of Michigan, Fall Semester 1962, Ann Arbor Publishers, Ann Arbor (1963). Zbl 1089.11500, MR 0159786 |
Reference:
|
[4] Ge, W., Li, W.: One Diophantine inequality with unlike powers of prime variables.J. Inequal. Appl. 2016 (2016), Paper No. 33, 8 pages. Zbl 06547399, MR 3453618, 10.1186/s13660-016-0983-6 |
Reference:
|
[5] Harman, G.: The values of ternary quadratic forms at prime arguments.Mathematika 51 (2004), 83-96. Zbl 1107.11043, MR 2220213, 10.1112/S0025579300015527 |
Reference:
|
[6] Harman, G.: Trigonometric sums over primes I.Mathematika 28 (1981), 249-254. Zbl 0465.10029, MR 0645105, 10.1112/S0025579300010305 |
Reference:
|
[7] Kumchev, A. V.: On Weyl sums over primes and almost primes.Mich. Math. J. 54 (2006), 243-268. Zbl 1137.11054, MR 2252758, 10.1307/mmj/1156345592 |
Reference:
|
[8] Languasco, A., Zaccagnini, A.: On a ternary Diophantine problem with mixed powers of primes.Acta Arith. 159 (2013), 345-362. Zbl 1330.11063, MR 3080797, 10.4064/aa159-4-4 |
Reference:
|
[9] Mu, Q., Lü, X. D.: Diophantine approximation with prime variables and mixed powers.Chin. Ann. Math., Ser. A 36 (2015), 303-312 Chinese. English summary. Zbl 1340.11054, MR 3443464, 10.16205/j.cnki.cama.2015.0028 |
Reference:
|
[10] Ren, X.: On exponential sums over primes and application in Waring-Goldbach problem.Sci. China Ser. A 48 (2005), 785-797. Zbl 1100.11025, MR 2158973, 10.1360/03ys0341 |
Reference:
|
[11] Schmidt, W. M.: Diophantine Approximation.Lecture Notes in Mathematics 785, Springer, New York (1980). Zbl 0421.10019, MR 0568710, 10.1007/978-3-540-38645-2 |
Reference:
|
[12] Vaughan, R. C.: Diophantine approximation by prime numbers I.Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. Zbl 0274.10045, MR 0337812, 10.1112/plms/s3-28.2.373 |
Reference:
|
[13] Vaughan, R. C.: Diophantine approximation by prime numbers II.Proc. Lond. Math. Soc., III. Ser. 28 (1974), 385-401. Zbl 0276.10031, MR 0337813, 10.1112/plms/s3-28.3.385 |
Reference:
|
[14] Yang, Y., Li, W.: One Diophantine inequality with integer and prime variables.J. Inequal. Appl. 2015 (2015), Paper No. 293, 9 pages. Zbl 1353.11065, MR 3399256, 10.1186/s13660-015-0817-y |
Reference:
|
[15] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers.Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. Zbl 06322154, MR 3218320, 10.1112/plms/pdt072 |
Reference:
|
[16] Zhao, L.: The additive problem with one cube and three cubes of primes.Mich. Math. J. 63 (2014), 763-779. Zbl 136011092, MR 3286670, 10.1307/mmj/1417799225 |
. |