[1] Veiga, H. Beirão da: 
A new regularity class for the Navier-Stokes equations in ${\mathbb R}^n$. Chin. Ann. Math. Ser. B 16 (1995), 407-412. 
MR 1380578 | 
Zbl 0837.35111[4] Escauriaza, L., Serëgin, G. A., Shverak, V.: 
$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from  Usp. Mat. Nauk 58 2003 3-44. 
DOI 10.1070/RM2003v058n02ABEH000609 | 
MR 1992563 | 
Zbl 1064.35134[8] Leray, J.: 
Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. 
DOI 10.1007/BF02547354 | 
MR 1555394[13] Serrin, J.: 
The initial value problem for the Navier-Stokes equations. Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. 
MR 0150444 | 
Zbl 0115.08502[14] Skalák, Z.: 
A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. J. Math. Phys. 55 (2014), 121506, 6 pages. 
DOI 10.1063/1.4904836 | 
MR 3390527 | 
Zbl 1308.35177[18] Zhang, Z., Yao, Z.-A., Lu, M., Ni, L.: 
Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations. J. Math. Phys. 52 (2011), 053103, 7 pages. 
DOI 10.1063/1.3589966 | 
MR 2839081 | 
Zbl 1317.35180[19] Zhou, Y., Pokorný, M.: 
On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50 (2009), 123514, 11 pages. 
DOI 10.1063/1.3268589 | 
MR 2582610 | 
Zbl 05772327