Title:
|
Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component (English) |
Author:
|
Zhang, Zujin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
219-225 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004). (English) |
Keyword:
|
regularity criterion |
Keyword:
|
Navier-Stokes equation |
MSC:
|
35B65 |
MSC:
|
35Q30 |
MSC:
|
76D03 |
idZBL:
|
Zbl 06861576 |
idMR:
|
MR3783594 |
DOI:
|
10.21136/CMJ.2017.0419-16 |
. |
Date available:
|
2018-03-19T10:29:13Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147130 |
. |
Reference:
|
[1] Veiga, H. Beirão da: A new regularity class for the Navier-Stokes equations in ${\mathbb R}^n$.Chin. Ann. Math. Ser. B 16 (1995), 407-412. Zbl 0837.35111, MR 1380578 |
Reference:
|
[2] Cao, C., Titi, E. S.: Regularity criteria for the three-dimensional Navier-Stokes equations.Indiana Univ. Math. J. 57 (2008), 2643-2661. Zbl 1159.35053, MR 2482994, 10.1512/iumj.2008.57.3719 |
Reference:
|
[3] Cao, C., Titi, E. S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor.Arch. Ration. Mech. Anal. 202 (2011), 919-932. Zbl 1256.35051, MR 2854673, 10.1007/s00205-011-0439-6 |
Reference:
|
[4] Escauriaza, L., Serëgin, G. A., Shverak, V.: $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness.Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from Usp. Mat. Nauk 58 2003 3-44. Zbl 1064.35134, MR 1992563, 10.1070/RM2003v058n02ABEH000609 |
Reference:
|
[5] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4 (1951), 213-231 German. Zbl 10.1002/mana.3210040121, MR 0050423, 10.1002/mana.3210040121 |
Reference:
|
[6] Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations.Nonlinearity 19 (2006), 453-469. Zbl 1149.35069, MR 2199398, 10.1088/0951-7715/19/2/012 |
Reference:
|
[7] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction.J. Math. Phys. 48 (2007), 065203, 10 pages. Zbl 1144.81373, MR 2337002, 10.1063/1.2395919 |
Reference:
|
[8] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. MR 1555394, 10.1007/BF02547354 |
Reference:
|
[9] Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation.Proc. Japan Acad. 36 (1960), 273-277. Zbl 0100.22404, MR 0139856, 10.3792/pja/1195524029 |
Reference:
|
[10] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity.Appl. Math., Praha 49 (2004), 483-493. Zbl 1099.35101, MR 2086090, 10.1023/B:APOM.0000048124.64244.7e |
Reference:
|
[11] Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations.J. Math. Fluid Mech. 13 (2011), 341-353. Zbl 1270.35354, MR 2824487, 10.1007/s00021-010-0038-6 |
Reference:
|
[12] Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes.Ann. Mat. Pura Appl., IV. Ser. 48 (1959), 173-182 Italian. Zbl 0148.0802, MR 0126088, 10.1007/BF02410664 |
Reference:
|
[13] Serrin, J.: The initial value problem for the Navier-Stokes equations.Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. Zbl 0115.08502, MR 0150444 |
Reference:
|
[14] Skalák, Z.: A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component.J. Math. Phys. 55 (2014), 121506, 6 pages. Zbl 1308.35177, MR 3390527, 10.1063/1.4904836 |
Reference:
|
[15] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882 |
Reference:
|
[16] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.American Mathematical Society, Chelsea Publishing, Providence (2001). Zbl 0981.35001, MR 1846644, 10.1090/chel/343 |
Reference:
|
[17] Zhang, Z.: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component.Z. Angew. Math. Phys. 66 (2015), 1707-1715. Zbl 1325.35147, MR 3377710, 10.1007/s00033-015-0500-7 |
Reference:
|
[18] Zhang, Z., Yao, Z.-A., Lu, M., Ni, L.: Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations.J. Math. Phys. 52 (2011), 053103, 7 pages. Zbl 1317.35180, MR 2839081, 10.1063/1.3589966 |
Reference:
|
[19] Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component.J. Math. Phys. 50 (2009), 123514, 11 pages. Zbl 05772327, MR 2582610, 10.1063/1.3268589 |
Reference:
|
[20] Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component.Nonlinearity 23 (2010), 1097-1107. Zbl 1190.35179, MR 2630092, 10.1088/0951-7715/23/5/004 |
. |