Previous |  Up |  Next

Article

Title: Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component (English)
Author: Zhang, Zujin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 219-225
Summary lang: English
.
Category: math
.
Summary: We consider the Cauchy problem for the three-dimensional Navier-Stokes equations, and provide an optimal regularity criterion in terms of $u_3$ and $\omega _3$, which are the third components of the velocity and vorticity, respectively. This gives an affirmative answer to an open problem in the paper by P. Penel, M. Pokorný (2004). (English)
Keyword: regularity criterion
Keyword: Navier-Stokes equation
MSC: 35B65
MSC: 35Q30
MSC: 76D03
idZBL: Zbl 06861576
idMR: MR3783594
DOI: 10.21136/CMJ.2017.0419-16
.
Date available: 2018-03-19T10:29:13Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147130
.
Reference: [1] Veiga, H. Beirão da: A new regularity class for the Navier-Stokes equations in ${\mathbb R}^n$.Chin. Ann. Math. Ser. B 16 (1995), 407-412. Zbl 0837.35111, MR 1380578
Reference: [2] Cao, C., Titi, E. S.: Regularity criteria for the three-dimensional Navier-Stokes equations.Indiana Univ. Math. J. 57 (2008), 2643-2661. Zbl 1159.35053, MR 2482994, 10.1512/iumj.2008.57.3719
Reference: [3] Cao, C., Titi, E. S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor.Arch. Ration. Mech. Anal. 202 (2011), 919-932. Zbl 1256.35051, MR 2854673, 10.1007/s00205-011-0439-6
Reference: [4] Escauriaza, L., Serëgin, G. A., Shverak, V.: $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness.Russ. Math. Surv. 58 (2003), 211-250. English. Russian original translation from Usp. Mat. Nauk 58 2003 3-44. Zbl 1064.35134, MR 1992563, 10.1070/RM2003v058n02ABEH000609
Reference: [5] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4 (1951), 213-231 German. Zbl 10.1002/mana.3210040121, MR 0050423, 10.1002/mana.3210040121
Reference: [6] Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations.Nonlinearity 19 (2006), 453-469. Zbl 1149.35069, MR 2199398, 10.1088/0951-7715/19/2/012
Reference: [7] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction.J. Math. Phys. 48 (2007), 065203, 10 pages. Zbl 1144.81373, MR 2337002, 10.1063/1.2395919
Reference: [8] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. MR 1555394, 10.1007/BF02547354
Reference: [9] Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation.Proc. Japan Acad. 36 (1960), 273-277. Zbl 0100.22404, MR 0139856, 10.3792/pja/1195524029
Reference: [10] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity.Appl. Math., Praha 49 (2004), 483-493. Zbl 1099.35101, MR 2086090, 10.1023/B:APOM.0000048124.64244.7e
Reference: [11] Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations.J. Math. Fluid Mech. 13 (2011), 341-353. Zbl 1270.35354, MR 2824487, 10.1007/s00021-010-0038-6
Reference: [12] Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes.Ann. Mat. Pura Appl., IV. Ser. 48 (1959), 173-182 Italian. Zbl 0148.0802, MR 0126088, 10.1007/BF02410664
Reference: [13] Serrin, J.: The initial value problem for the Navier-Stokes equations.Nonlinear Problems Proc. Symp., Madison, 1962, University of Wisconsin Press, Madison, Wisconsin (1963), 69-98. Zbl 0115.08502, MR 0150444
Reference: [14] Skalák, Z.: A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component.J. Math. Phys. 55 (2014), 121506, 6 pages. Zbl 1308.35177, MR 3390527, 10.1063/1.4904836
Reference: [15] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882
Reference: [16] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.American Mathematical Society, Chelsea Publishing, Providence (2001). Zbl 0981.35001, MR 1846644, 10.1090/chel/343
Reference: [17] Zhang, Z.: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component.Z. Angew. Math. Phys. 66 (2015), 1707-1715. Zbl 1325.35147, MR 3377710, 10.1007/s00033-015-0500-7
Reference: [18] Zhang, Z., Yao, Z.-A., Lu, M., Ni, L.: Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations.J. Math. Phys. 52 (2011), 053103, 7 pages. Zbl 1317.35180, MR 2839081, 10.1063/1.3589966
Reference: [19] Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component.J. Math. Phys. 50 (2009), 123514, 11 pages. Zbl 05772327, MR 2582610, 10.1063/1.3268589
Reference: [20] Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component.Nonlinearity 23 (2010), 1097-1107. Zbl 1190.35179, MR 2630092, 10.1088/0951-7715/23/5/004
.

Files

Files Size Format View
CzechMathJ_68-2018-1_13.pdf 261.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo