Previous |  Up |  Next

Article

Title: Automorphism liftable modules (English)
Author: Selvaraj, Chelliah
Author: Santhakumar, Sudalaimuthu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 1
Year: 2018
Pages: 35-44
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of an automorphism liftable module and give a characterization to it. We prove that category equivalence preserves automorphism liftable. Furthermore, we characterize semisimple rings, perfect rings, hereditary rings and quasi-Frobenius rings by properties of automorphism liftable modules. Also, we study automorphism liftable modules with summand sum property (SSP) and summand intersection property (SIP). (English)
Keyword: dual automorphism invariant module
Keyword: supplemented module
Keyword: semisimple ring
Keyword: perfect ring
Keyword: summand sum property
MSC: 16D40
MSC: 16L30
MSC: 16W20
idZBL: Zbl 06890395
idMR: MR3783807
DOI: 10.14712/1213-7243.2015.237
.
Date available: 2018-04-17T13:42:30Z
Last updated: 2020-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147177
.
Reference: [1] Alkan M., Harmanci A.: On summand sum and summand intersection property of modules.Turkish J. Math. 26 (2002), 131–147.
Reference: [2] Bass H.: Finitistic dimension and a homological generalization of semiprimary rings.Trans. Amer. Math. Soc. 95 (1960), 466–488. 10.1090/S0002-9947-1960-0157984-8
Reference: [3] Byrd K. A.: Some characterizations of uniserial rings.Math. Ann. 186 (1970), 163–170. 10.1007/BF01433274
Reference: [4] Garcia J. L.: Properties of direct summands of modules.Comm. Algebra 17 (1989), 73–92. 10.1080/00927878908823714
Reference: [5] Golan J. S.: Characterization of rings using quasiprojective modules.Israel J. Math. 8 (1970), 34–38. 10.1007/BF02771548
Reference: [6] Golan J. S.: Characterization of rings using quasiprojective modules II., Proc. Amer. Math. Soc. 28 (1971), no. 2, 337–343. 10.1090/S0002-9939-1971-0280551-5
Reference: [7] Golan J. S.: Characterization of rings using quasiprojective modules III., Proc. Amer. Math. Soc. 31 (1972), no. 2, 401–408. 10.1090/S0002-9939-1972-0302700-3
Reference: [8] Koşan M. T., Ha N. T. T., Quynh T. C.: Rings for which every cyclic module is dual automorphism-invariant.J. Algebra Appl. 15 (2016), no. 5, 1650078, 11 pp. 10.1142/S021949881650078X
Reference: [9] Satyanarayana M.: Semisimple rings.Amer. Math. Monthly 74 (1967), 1086. 10.2307/2313615
Reference: [10] Selvaraj C., Santhakumar S.: A note on dual automorphism-invariant modules.J. Algebra Appl. 16 (2017), no. 2, 1750024, 11 pp. 10.1142/S0219498817500244
Reference: [11] Singh S., Srivastava A. K.: Dual automorphism-invariant modules.J. Algebra 371 (2012), 262–275. 10.1016/j.jalgebra.2012.08.012
Reference: [12] Tuganbaev A. A.: Automorphisms of submodules and their extensions.Discrete Math. Appl. 23 (2013), no. 1, 115–124. 10.1515/dma-2013-006
Reference: [13] Tütüncü D. K.: A note on ADS$^*$-modules.Bull. Math. Sci. 2 (2012), 359–363. 10.1007/s13373-012-0020-0
Reference: [14] Ware R.: Endomorphism rings of projective modules.Trans. Amer. Math. Soc. 155 (1971), 233–256. 10.1090/S0002-9947-1971-0274511-2
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-1_4.pdf 267.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo