Previous |  Up |  Next

Article

Title: A free boundary problem for a predator-prey model with nonlinear prey-taxis (English)
Author: Yousefnezhad, Mohsen
Author: Mohammadi, Seyyed Abbas
Author: Bozorgnia, Farid
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 2
Year: 2018
Pages: 125-147
Summary lang: English
.
Category: math
.
Summary: This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary and the stability of the solutions. (English)
Keyword: prey-predator model
Keyword: prey-taxis
Keyword: free boundary
Keyword: classical solutions
Keyword: global existence
MSC: 35K51
MSC: 35K55
MSC: 35K57
MSC: 35K59
MSC: 35R35
MSC: 92B05
MSC: 92D25
idZBL: Zbl 06890302
idMR: MR3795243
DOI: 10.21136/AM.2018.0227-17
.
Date available: 2018-05-09T08:53:27Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147186
.
Reference: [1] Ainseba, B. E., Bendahmane, M., Noussair, A.: A reaction-diffusion system modeling predator-prey with prey-taxis.Nonlinear Anal., Real World Appl. 9 (2008), 2086-2105. Zbl 1156.35404, MR 2441768, 10.1016/j.nonrwa.2007.06.017
Reference: [2] Bozorgnia, F., Arakelyan, A.: Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems.Appl. Math. Comput. 219 (2013), 8863-8875. Zbl 1291.65257, MR 3047783, 10.1016/j.amc.2013.03.074
Reference: [3] Bunting, G., Du, Y., Krakowski, K.: Spreading speed revisited: analysis of a free boundary model.Netw. Heterog. Media 7 (2012), 583-603. Zbl 1302.35194, MR 3004677, 10.3934/nhm.2012.7.583
Reference: [4] Chen, X., Friedman, A.: A free boundary problem arising in a model of wound healing.SIAM J. Math. Anal. 32 (2000), 778-800. Zbl 0972.35193, MR 1814738, 10.1137/S0036141099351693
Reference: [5] Du, Y., Guo, Z.: The Stefan problem for the Fisher-KPP equation.J. Differ. Equations 253 (2012), 996-1035. Zbl 1257.35110, MR 2922661, 10.1016/j.jde.2012.04.014
Reference: [6] Friedman, A.: Variational Principles and Free-Boundary Problems.Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, New York (1982). Zbl 0564.49002, MR 0679313
Reference: [7] He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis.Appl. Math. Lett. 49 (2015), 73-77. Zbl 06587041, MR 3361698, 10.1016/j.aml.2015.04.017
Reference: [8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis.J. Math. Biol. 58 (2009), 183-217. Zbl 1161.92003, MR 2448428, 10.1007/s00285-008-0201-3
Reference: [9] Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems.SIAM J. Appl. Math. 55 (1995), 763-783. Zbl 0832.34035, MR 1331585, 10.1137/S0036139993253201
Reference: [10] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-Linear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822
Reference: [11] Levin, S. A.: A more functional response to predator-prey stability.Amer. Natur. 111 (1977), 381-383. 10.1086/283170
Reference: [12] Li, A.-W.: Impact of noise on pattern formation in a predator-prey model.Nonlinear Dyn. 66 (2011), 689-694. MR 2859594, 10.1007/s11071-010-9941-x
Reference: [13] Li, L., Jin, Z.: Pattern dynamics of a spatial predator-prey model with noise.Nonlinear Dyn. 67 (2012), 1737-1744. MR 2877412, 10.1007/s11071-011-0101-8
Reference: [14] Li, C., Wang, X., Shao, Y.: Steady states of a predator-prey model with prey-taxis.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 97 (2014), 155-168. Zbl 1287.35018, MR 3146380, 10.1016/j.na.2013.11.022
Reference: [15] Lin, Z.: A free boundary problem for a predator-prey model.Nonlinearity 20 (2007), 1883-1892. Zbl 1126.35111, MR 2343682, 10.1088/0951-7715/20/8/004
Reference: [16] Markowich, P. A.: Applied Partial Differential Equations: A Visual Approach.Springer, Berlin (2007). Zbl 1109.35001, MR 2309862, 10.1007/978-3-540-34646-3
Reference: [17] Mimura, M., Kawasaki, K.: Spatial segregation in competitive interaction-diffusion equations.J. Math. Biol. 9 (1980), 49-64. Zbl 0425.92010, MR 0648845, 10.1007/BF00276035
Reference: [18] Mimura, M., Murray, J. D.: On a diffusive prey-predator model which exhibits patchiness.J. Theor. Biol. 75 (1978), 249-252. MR 0518476, 10.1016/0022-5193(78)90332-6
Reference: [19] Monobe, H., Wu, C.-H.: On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment.J. Diff. Equations 261 (2016), 6144-6177. Zbl 1351.35070, MR 3552561, 10.1016/j.jde.2016.08.033
Reference: [20] Othmer, H. G., Stevens, A.: Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks.SIAM J. Appl. Math. 57 (1997), 1044-1081. Zbl 0990.35128, MR 1462051, 10.1137/S0036139995288976
Reference: [21] Painter, K. J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement.Can. Appl. Math. Q. 10 (2002), 501-543. Zbl 1057.92013, MR 2052525
Reference: [22] Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect.Nonlinear Dyn. 85 (2016), 1-12. MR 3510594, 10.1007/s11071-016-2671-y
Reference: [23] Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis.Nonlinear Anal., Real World Appl. 11 (2010), 2056-2064. Zbl 1195.35171, MR 2646615, 10.1016/j.nonrwa.2009.05.005
Reference: [24] Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system.J. Math. Biol. 43 (2001), 268-290. Zbl 1007.34031, MR 1868217, 10.1007/s002850100097
Reference: [25] Wang, M.: On some free boundary problems of the prey-predator model.J. Differ. Equations 256 (2014), 3365-3394. Zbl 1317.35110, MR 3177899, 10.1016/j.jde.2014.02.013
Reference: [26] Wang, M.: Spreading and vanishing in the diffusive prey-predator model with a free boundary.Commun. Nonlinear Sci. Numer. Simul. 23 (2015), 311-327. Zbl 1354.92074, MR 3312368, 10.1016/j.cnsns.2014.11.016
Reference: [27] Yousefnezhad, M., Mohammadi, S. A.: Stability of a predator-prey system with prey taxis in a general class of functional responses.Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 62-72. Zbl 1363.35185, MR 3432748, 10.1016/S0252-9602(15)30078-3
Reference: [28] Zhao, J., Wang, M.: A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment.Nonlinear Anal., Real World Appl. 16 (2014), 250-263. Zbl 1296.35220, MR 3123816, 10.1016/j.nonrwa.2013.10.003
.

Files

Files Size Format View
AplMat_63-2018-2_3.pdf 467.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo