Previous |  Up |  Next

Article

Title: Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data (English)
Author: Gao, Peng
Author: Dong, Heping
Author: Ma, Fuming
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 2
Year: 2018
Pages: 149-165
Summary lang: English
.
Category: math
.
Summary: We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to illustrate the feasibility of the proposed method. (English)
Keyword: inverse scattering problem
Keyword: Helmholtz equation
Keyword: crack
Keyword: phaseless
Keyword: translation invariance
MSC: 35J05
MSC: 35P25
MSC: 35R30
MSC: 45E05
MSC: 65R32
MSC: 78A46
idZBL: Zbl 06890303
idMR: MR3795244
DOI: 10.21136/AM.2018.0154-17
.
Date available: 2018-05-09T08:53:47Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147187
.
Reference: [1] Ammari, H., Chow, Y. T., Zou, J.: Phased and phaseless domain reconstructions in the inverse scattering problem via scattering coefficients.SIAM J. Appl. Math. 76 (2016), 1000-1030. Zbl 1338.35490, MR 3505314, 10.1137/15M1043959
Reference: [2] Bao, G., Zhang, L.: Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data.Inverse Probl. 32 (2016), Article ID 085002, 16 pages. Zbl 1351.65083, MR 3535661, 10.1088/0266-5611/32/8/085002
Reference: [3] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory.Applied Mathematical Sciences 93, Springer, New York (2013). Zbl 1266.35121, MR 2986407, 10.1007/978-1-4614-4942-3
Reference: [4] Ivanyshyn, O.: Shape reconstruction of acoustic obstacles from the modulus of the far field pattern.Inverse Probl. Imaging 1 (2007), 609-622. Zbl 1194.35502, MR 2350217, 10.3934/ipi.2007.1.609
Reference: [5] Ivanyshyn, O., Johansson, T.: Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle.J. Integral Equations Appl. 19 (2007), 289-308. Zbl 1135.65392, MR 2363789, 10.1216/jiea/1190905488
Reference: [6] Ivanyshyn, O., Kress, R.: Inverse scattering for planar cracks via nonlinear integral equations.Math. Methods Appl. Sci. 31 (2008), 1221-1232. Zbl 1153.65367, MR 2426204, 10.1002/mma.970
Reference: [7] Ivanyshyn, O., Kress, R.: Identification of sound-soft 3D obstacles from phaseless data.Inverse Probl. Imaging 4 (2010), 131-149. Zbl 1220.35194, MR 2592786, 10.3934/ipi.2010.4.131
Reference: [8] Johansson, T., Sleeman, B. D.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern.IMA J. Appl. Math. 72 (2007), 96-112. Zbl 1121.76059, MR 2309563, 10.1093/imamat/hxl026
Reference: [9] Karageorghis, A., Johansson, B. T., Lesnic, D.: The method of fundamental solutions for the identification of a sound-soft obstacle in inverse acoustic scattering.Appl. Numer. Math. 62 (2012), 1767-1780. Zbl 1255.65203, MR 2980733, 10.1016/j.apnum.2012.05.011
Reference: [10] Kirsch, A., Ritter, S.: A linear sampling method for inverse scattering from an open arc.Inverse Probl. 16 (2000), 89-105. Zbl 0968.35129, MR 1741229, 10.1088/0266-5611/16/1/308
Reference: [11] Kress, R.: Fréchet differentiability of the far field operator for scattering from a crack.J. Inverse Ill-Posed Probl. 3 (1995), 305-313. Zbl 0846.35146, MR 1366555, 10.1515/jiip.1995.3.4.305
Reference: [12] Kress, R.: Inverse scattering from an open arc.Math. Methods Appl. Sci. 18 (1995), 267-293. Zbl 0824.35030, MR 1319999, 10.1002/mma.1670180403
Reference: [13] Kress, R., Rundell, W.: Inverse obstacle scattering with modulus of the far field pattern as data.Inverse Problems in Medical Imaging and Nondestructive Testing H. W. Engl et al. Springer, Wien (1997), 75-92. Zbl 0880.65105, MR 1603907, 10.1007/978-3-7091-6521-8_7
Reference: [14] Kress, R., Serranho, P.: A hybrid method for two-dimensional crack reconstruction.Inverse Probl. 21 (2005), 773-784. Zbl 1070.35126, MR 2146288, 10.1088/0266-5611/21/2/020
Reference: [15] Lee, K.-M.: Shape reconstructions from phaseless data.Eng. Anal. Bound. Elem. 71 (2016), 174-178. MR 3539835, 10.1016/j.enganabound.2016.08.001
Reference: [16] Liu, X., Zhang, B.: Unique determination of a sound-soft ball by the modulus of a single far field datum.J. Math. Anal. Appl. 365 (2010), 619-624. Zbl 1185.35329, MR 2587064, 10.1016/j.jmaa.2009.11.031
Reference: [17] Mönch, L.: On the inverse acoustic scattering problem by an open arc: the sound-hard case.Inverse Probl. 13 (1997), 1379-1392. Zbl 0894.35079, MR 1474374, 10.1088/0266-5611/13/5/017
Reference: [18] Yan, Y., Sloan, I. H.: On integral equations of the first kind with logarithmic kernels.J. Integral Equations Appl. 1 (1988), 549-579. Zbl 0682.45001, MR 1008406, 10.1216/JIE-1988-1-4-549
.

Files

Files Size Format View
AplMat_63-2018-2_4.pdf 374.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo