Previous |  Up |  Next

Article

Keywords:
supercyclic operator; weakly supercyclic operator; weakly $l$-sequentially supercyclic operator
Summary:
This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent.
References:
[1] Abramovich, Y. A., Aliprantis, C. D.: An Invitation to Operator Theory. Graduate Studies in Mathematics 50, American Mathematical Society, Providence (2002). DOI 10.1090/gsm/050 | MR 1921782 | Zbl 1022.47001
[2] Ansari, S. I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148 (1997), 384-390. DOI 10.1006/jfan.1996.3093 | MR 1469346 | Zbl 0898.47019
[3] Ansari, S. I., Bourdon, P. S.: Some properties of cyclic operators. Acta Sci. Math. 63 (1997), 195-207. MR 1459787 | Zbl 0892.47004
[4] Bayart, F., Matheron, E.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 1-15. DOI 10.1017/S0013091504000975 | MR 2202138 | Zbl 1103.47006
[5] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). DOI 10.1017/CBO9780511581113 | MR 2533318 | Zbl 1187.47001
[6] Bès, J., Chan, K. C., Sanders, R.: Every weakly sequentially hypercyclic shift is norm hypercyclic. Math. Proc. R. Ir. Acad. 105A (2005), 79-85. DOI 10.3318/PRIA.2005.105.2.79 | MR 2182152 | Zbl 1113.47005
[7] Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37 (2005), 254-264. DOI 10.1112/S0024609304003698 | MR 2119025 | Zbl 1150.47005
[8] Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159 (1998), 587-595. DOI 10.1006/jfan.1998.3315 | MR 1658096 | Zbl 0926.47011
[9] Bourdon, P. S.: Orbits of hyponormal operators. Mich. Math. J. 44 (1997), 345-353. DOI 10.1307/mmj/1029005709 | MR 1460419 | Zbl 0896.47020
[10] Conway, J. B.: A Course in Functional Analysis. Graduate Texts in Mathematics 96, Springer, New York (1990). MR 1070713 | Zbl 0706.46003
[11] Dilworth, S. J., Troitsky, V. G.: Spectrum of a weakly hypercyclic operator meets the unit circle. Trends in Banach Spaces and Operator Theory A Conf. on Trends in Banach Spaces and Operator Theory, Memphis, 2001, Contemp. Math. 321, American Mathematical Society, Providence (2003), 67-69. DOI 10.1090/conm/321/05634 | MR 1978807 | Zbl 1052.47003
[12] Duggal, B. P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo (2) 65 (2016), 297-306. DOI 10.1007/s12215-016-0234-1 | MR 3535456 | Zbl 1356.47027
[13] Duggal, B. P., Kubrusly, C. S., Kim, I. H.: Bishop's property $(\beta)$, a commutativity theorem and the dynamics of class $\Cal A(s,t)$ operators. J. Math. Anal. Appl. 427 (2015), 107-113. DOI 10.1016/j.jmaa.2015.02.040 | MR 3318189 | Zbl 1330.47029
[14] Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A.: The Volterra operator is not supercyclic. Integral Equations Oper. Theory 50 (2004), 211-216. DOI 10.1007/s00020-003-1227-y | MR 2099790 | Zbl 1080.47011
[15] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext, Springer, London (2011). DOI 10.1007/978-1-4471-2170-1 | MR 2919812 | Zbl 1246.47004
[16] Halmos, P. R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics 19, Springer, New York (1982). DOI 10.1007/978-1-4684-9330-6 | MR 0675952 | Zbl 0496.47001
[17] Herrero, D. A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99 (1991), 179-190. DOI 10.1016/0022-1236(91)90058-D | MR 1120920 | Zbl 0758.47016
[18] Herzog, G.: On linear operators having supercyclic vectors. Stud. Math. 103 (1992), 295-298. DOI 10.4064/sm-103-3-295-298 | MR 1202014 | Zbl 0811.47018
[19] Hilden, H. M., Wallen, L. J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23 (1974), 557-565. DOI 10.1512/iumj.1974.23.23046 | MR 0326452 | Zbl 0274.47004
[20] Kubrusly, C. S.: The Elements of Operator Theory. Birkhäuser, New York (2011). DOI 10.1007/978-0-8176-4998-2 | MR 2778685 | Zbl 1231.47001
[21] Kubrusly, C. S.: Spectral Theory of Operators on Hilbert Spaces. Birkhäuser, New York (2012). DOI 10.1007/978-0-8176-8328-3 | MR 2951608 | Zbl 1256.47001
[22] Kubrusly, C. S.: Singular-continuous unitaries and weak dynamics. Math. Proc. R. Ir. Acad. 116A (2016), 45-56. DOI 10.3318/PRIA.2016.116.04 | MR 3653822 | Zbl 06629394
[23] Kubrusly, C. S., Duggal, B. P.: On weak supercyclicity I. Avaible at\\ https://arxiv.org/abs/1801.08091
[24] Megginson, R. E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics 183, Springer, New York (1998). DOI 10.1007/978-1-4612-0603-3 | MR 1650235 | Zbl 0910.46008
[25] Montes-Rodríguez, A., Shkarin, S. A.: Non-weakly supercyclic operators. J. Oper. Theory 58 (2007), 39-62. MR 2336044 | Zbl 1138.47300
[26] Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236 (2001), 779-786. DOI 10.1007/PL00004850 | MR 1827503 | Zbl 0994.47011
[27] Salas, H. N.: Supercyclicity and weighted shifts. Stud. Math. 135 (1999), 55-74. DOI 10.4064/sm-135-1-55-74 | MR 1686371 | Zbl 0940.47005
[28] Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292 (2004), 148-159. DOI 10.1016/j.jmaa.2003.11.049 | MR 2050222 | Zbl 1073.47013
[29] Schechter, M.: Principles of Functional Analysis. Graduate Studies in Mathematics 36, American Mathematical Society, Providence (2002). DOI 10.1090/gsm/036 | MR 1861991 | Zbl 1002.46002
[30] Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242 (2007), 37-77. DOI 10.1016/j.jfa.2006.04.021 | MR 2274015 | Zbl 1114.47007
Partner of
EuDML logo