Previous |  Up |  Next

Article

Title: On weak supercyclicity II (English)
Author: Kubrusly, Carlos S.
Author: Duggal, Bhagwati P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 371-386
Summary lang: English
.
Category: math
.
Summary: This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly $l$-sequentially supercyclic, and (iii) weak $l$-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak $l$-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly $l$-sequentially supercyclic operator is quasinilpotent. (English)
Keyword: supercyclic operator
Keyword: weakly supercyclic operator
Keyword: weakly $l$-sequentially supercyclic operator
MSC: 47A16
MSC: 47B15
idZBL: Zbl 06890378
idMR: MR3819179
DOI: 10.21136/CMJ.2018.0457-16
.
Date available: 2018-06-11T10:52:28Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147224
.
Reference: [1] Abramovich, Y. A., Aliprantis, C. D.: An Invitation to Operator Theory.Graduate Studies in Mathematics 50, American Mathematical Society, Providence (2002). Zbl 1022.47001, MR 1921782, 10.1090/gsm/050
Reference: [2] Ansari, S. I.: Existence of hypercyclic operators on topological vector spaces.J. Funct. Anal. 148 (1997), 384-390. Zbl 0898.47019, MR 1469346, 10.1006/jfan.1996.3093
Reference: [3] Ansari, S. I., Bourdon, P. S.: Some properties of cyclic operators.Acta Sci. Math. 63 (1997), 195-207. Zbl 0892.47004, MR 1459787
Reference: [4] Bayart, F., Matheron, E.: Hyponormal operators, weighted shifts and weak forms of supercyclicity.Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 1-15. Zbl 1103.47006, MR 2202138, 10.1017/S0013091504000975
Reference: [5] Bayart, F., Matheron, É.: Dynamics of Linear Operators.Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). Zbl 1187.47001, MR 2533318, 10.1017/CBO9780511581113
Reference: [6] Bès, J., Chan, K. C., Sanders, R.: Every weakly sequentially hypercyclic shift is norm hypercyclic.Math. Proc. R. Ir. Acad. 105A (2005), 79-85. Zbl 1113.47005, MR 2182152, 10.3318/PRIA.2005.105.2.79
Reference: [7] Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces.Bull. Lond. Math. Soc. 37 (2005), 254-264. Zbl 1150.47005, MR 2119025, 10.1112/S0024609304003698
Reference: [8] Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces.J. Funct. Anal. 159 (1998), 587-595. Zbl 0926.47011, MR 1658096, 10.1006/jfan.1998.3315
Reference: [9] Bourdon, P. S.: Orbits of hyponormal operators.Mich. Math. J. 44 (1997), 345-353. Zbl 0896.47020, MR 1460419, 10.1307/mmj/1029005709
Reference: [10] Conway, J. B.: A Course in Functional Analysis.Graduate Texts in Mathematics 96, Springer, New York (1990). Zbl 0706.46003, MR 1070713
Reference: [11] Dilworth, S. J., Troitsky, V. G.: Spectrum of a weakly hypercyclic operator meets the unit circle.Trends in Banach Spaces and Operator Theory A Conf. on Trends in Banach Spaces and Operator Theory, Memphis, 2001, Contemp. Math. 321, American Mathematical Society, Providence (2003), 67-69. Zbl 1052.47003, MR 1978807, 10.1090/conm/321/05634
Reference: [12] Duggal, B. P.: Weak supercyclicity: dynamics of paranormal operators.Rend. Circ. Mat. Palermo (2) 65 (2016), 297-306. Zbl 1356.47027, MR 3535456, 10.1007/s12215-016-0234-1
Reference: [13] Duggal, B. P., Kubrusly, C. S., Kim, I. H.: Bishop's property $(\beta)$, a commutativity theorem and the dynamics of class $\Cal A(s,t)$ operators.J. Math. Anal. Appl. 427 (2015), 107-113. Zbl 1330.47029, MR 3318189, 10.1016/j.jmaa.2015.02.040
Reference: [14] Gallardo-Gutiérrez, E. A., Montes-Rodríguez, A.: The Volterra operator is not supercyclic.Integral Equations Oper. Theory 50 (2004), 211-216. Zbl 1080.47011, MR 2099790, 10.1007/s00020-003-1227-y
Reference: [15] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos.Universitext, Springer, London (2011). Zbl 1246.47004, MR 2919812, 10.1007/978-1-4471-2170-1
Reference: [16] Halmos, P. R.: A Hilbert Space Problem Book.Graduate Texts in Mathematics 19, Springer, New York (1982). Zbl 0496.47001, MR 0675952, 10.1007/978-1-4684-9330-6
Reference: [17] Herrero, D. A.: Limits of hypercyclic and supercyclic operators.J. Funct. Anal. 99 (1991), 179-190. Zbl 0758.47016, MR 1120920, 10.1016/0022-1236(91)90058-D
Reference: [18] Herzog, G.: On linear operators having supercyclic vectors.Stud. Math. 103 (1992), 295-298. Zbl 0811.47018, MR 1202014, 10.4064/sm-103-3-295-298
Reference: [19] Hilden, H. M., Wallen, L. J.: Some cyclic and non-cyclic vectors of certain operators.Indiana Univ. Math. J. 23 (1974), 557-565. Zbl 0274.47004, MR 0326452, 10.1512/iumj.1974.23.23046
Reference: [20] Kubrusly, C. S.: The Elements of Operator Theory.Birkhäuser, New York (2011). Zbl 1231.47001, MR 2778685, 10.1007/978-0-8176-4998-2
Reference: [21] Kubrusly, C. S.: Spectral Theory of Operators on Hilbert Spaces.Birkhäuser, New York (2012). Zbl 1256.47001, MR 2951608, 10.1007/978-0-8176-8328-3
Reference: [22] Kubrusly, C. S.: Singular-continuous unitaries and weak dynamics.Math. Proc. R. Ir. Acad. 116A (2016), 45-56. Zbl 06629394, MR 3653822, 10.3318/PRIA.2016.116.04
Reference: [23] Kubrusly, C. S., Duggal, B. P.: On weak supercyclicity I.Avaible at\\https://arxiv.org/abs/1801.08091.
Reference: [24] Megginson, R. E.: An Introduction to Banach Space Theory.Graduate Texts in Mathematics 183, Springer, New York (1998). Zbl 0910.46008, MR 1650235, 10.1007/978-1-4612-0603-3
Reference: [25] Montes-Rodríguez, A., Shkarin, S. A.: Non-weakly supercyclic operators.J. Oper. Theory 58 (2007), 39-62. Zbl 1138.47300, MR 2336044
Reference: [26] Peris, A.: Multi-hypercyclic operators are hypercyclic.Math. Z. 236 (2001), 779-786. Zbl 0994.47011, MR 1827503, 10.1007/PL00004850
Reference: [27] Salas, H. N.: Supercyclicity and weighted shifts.Stud. Math. 135 (1999), 55-74. Zbl 0940.47005, MR 1686371, 10.4064/sm-135-1-55-74
Reference: [28] Sanders, R.: Weakly supercyclic operators.J. Math. Anal. Appl. 292 (2004), 148-159. Zbl 1073.47013, MR 2050222, 10.1016/j.jmaa.2003.11.049
Reference: [29] Schechter, M.: Principles of Functional Analysis.Graduate Studies in Mathematics 36, American Mathematical Society, Providence (2002). Zbl 1002.46002, MR 1861991, 10.1090/gsm/036
Reference: [30] Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity.J. Funct. Anal. 242 (2007), 37-77. Zbl 1114.47007, MR 2274015, 10.1016/j.jfa.2006.04.021
.

Files

Files Size Format View
CzechMathJ_68-2018-2_5.pdf 342.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo