Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
harmonic metric; non-reductive homogeneous space; pseudo-Riemannian geometry
Summary:
We study harmonic metrics with respect to the class of invariant metrics on non-reductive homogeneous four dimensional manifolds. In particular, we consider harmonic lifted metrics with respect to the Sasaki lifts, horizontal lifts and complete lifts of the metrics under study.
References:
[1] Baird, P., Wood, J. C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monographs New Series 29, Oxford University Press, Oxford (2003). DOI 10.1093/acprof:oso/9780198503620.001.0001 | MR 2044031 | Zbl 1055.53049
[2] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Connections which are harmonic with respect to general natural metrics. Differ. Geom. Appl. 30 (2012), 306-317. DOI 10.1016/j.difgeo.2012.05.004 | MR 2926271 | Zbl 1252.53083
[3] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Harmonic almost complex structures with respect to general natural metrics. Mediterr. J. Math. 11 (2014), 123-136. DOI 10.1007/s00009-013-0302-0 | MR 3160617 | Zbl 1317.53041
[4] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Structures which are harmonic with respect to Walker metrics. Mediterr. J. Math. 12 (2015), 481-496. DOI 10.1007/s00009-014-0409-y | MR 3350322 | Zbl 1322.53065
[5] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differ. Geom. Appl. 25 (2007), 322-334. DOI 10.1016/j.difgeo.2006.11.010 | MR 2330461 | Zbl 1128.53037
[6] Brozos-Vázquez, M., García-Río, E., Gilkey, P., Nikčević, S., Vázquez-Lorenzo, R.: The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics 5, Morgan & Claypool Publishers, San Rafael (2009). DOI 10.2200/S00197ED1V01Y200906MAS005 | MR 2656431 | Zbl 1206.53039
[7] Calvaruso, G., Fino, A.: Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces. Can. J. Math. 64 (2012), 778-804. DOI 10.4153/CJM-2011-091-1 | MR 2957230 | Zbl 1252.53056
[8] Calvaruso, G., Fino, A., Zaeim, A.: Homogeneous geodesics of non-reductive homogeneous pseudo-Riemannian 4-manifolds. Bull. Braz. Math. Soc. (N.S.) 46 (2015), 23-64. DOI 10.1007/s00574-015-0083-0 | MR 3324177 | Zbl 1318.53048
[9] Calvaruso, G., Zaeim, A.: A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces. J. Geom. Phys. 80 (2014), 15-25. DOI 10.1016/j.geomphys.2014.02.007 | MR 3188790 | Zbl 1286.53046
[10] Calvaruso, G., Zaeim, A.: Geometric structures over non-reductive homogeneous 4-spaces. Adv. Geom. 14 (2014), 191-214. DOI 10.1515/advgeom-2014-0014 | MR 3263422 | Zbl 1298.53072
[11] Chen, B.-Y., Nagano, T.: Harmonic metrics, harmonic tensors, and Gauss maps. J. Math. Soc. Japan 36 (1984), 295-313. DOI 10.2969/jmsj/03620295 | MR 0740319 | Zbl 0543.58015
[12] Dodson, C. T. J., Pérez, M. Trinidad, Vázquez-Abal, M. E.: Harmonic-Killing vector fields. Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 481-490. MR 2016229 | Zbl 1044.53052
[13] J. Eells, Jr., J. H. Sampson: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), 109-160. DOI 10.2307/2373037 | MR 0164306 | Zbl 0122.40102
[14] Falcitelli, M., Pastore, A. M.: On the tangent bundle and on the bundle of the linear frames over an affinely connected manifold. Math. Balk., New Ser. 2 (1988), 336-356. MR 0997625 | Zbl 0677.53040
[15] Fels, M. E., Renner, A. G.: Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four. Can. J. Math. 58 (2006), 282-311. DOI 10.4153/CJM-2006-012-1 | MR 2209280 | Zbl 1100.53043
[16] Kowalski, O., Sekizawa, M.: Almost Osserman structures on natural Riemann extensions. Differ. Geom. Appl. 31 (2013), 140-149. DOI 10.1016/j.difgeo.2012.10.007 | MR 3010084 | Zbl 1277.53016
[17] O'Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics 103, Academic Press, New York (1983). MR 0719023 | Zbl 0531.53051
[18] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986-994. DOI 10.1063/1.522992 | MR 0404362 | Zbl 0357.17004
[19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Differential Geometry. Pure and Applied Mathematics 16, Marcel Dekker, New York (1973). MR 0350650 | Zbl 0262.53024
Partner of
EuDML logo