Previous |  Up |  Next

Article

Title: Every $2$-group with all subgroups normal-by-finite is locally finite (English)
Author: Jabara, Enrico
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 491-496
Summary lang: English
.
Category: math
.
Summary: A group $G$ has all of its subgroups normal-by-finite if $H/H_{G}$ is finite for all subgroups $H$ of $G$. The Tarski-groups provide examples of $p$-groups ($p$ a ``large'' prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a $2$-group with every subgroup normal-by-finite is locally finite. We also prove that if $| H/H_{G} | \leq 2$ for every subgroup $H$ of $G$, then $G$ contains an Abelian subgroup of index at most $8$. (English)
Keyword: $2$-group
Keyword: locally finite group
Keyword: normal-by-finite subgroup
Keyword: core-finite group
MSC: 20D15
MSC: 20F14
MSC: 20F50
idZBL: Zbl 06890385
idMR: MR3819186
DOI: 10.21136/CMJ.2018.0504-16
.
Date available: 2018-06-11T10:55:59Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147231
.
Reference: [1] Buckley, J. T., Lennox, J. C., Neumann, B. H., Smith, H., Wiegold, J.: Groups with all subgroups normal-by-finite.J. Aust. Math. Soc., Ser. A 59 (1995), 384-398. Zbl 0853.20023, MR 1355229, 10.1017/S1446788700037289
Reference: [2] Cutolo, G., Khukhro, E. I., Lennox, J. C., Rinauro, S., Smith, H., Wiegold, J.: Locally finite groups all of whose subgroups are boundedly finite over their cores.Bull. Lond. Math. Soc. 29 (1997), 563-570. Zbl 0904.20030, MR 1458716, 10.1112/S0024609397003068
Reference: [3] Kegel, O. H., Wehrfritz, B. A. F.: Locally Finite Groups.North-Holland Mathematical Library 3, North-Holland Publishing, Amsterdam (1973). Zbl 0259.20001, MR 0470081
Reference: [4] Lennox, J. C., Hassanabadi, A. Mohammadi, Stewart, A. G. R., Wiegold, J.: Nilpotent extensibility and centralizers in infinite 2-groups.Proceedings of the Second International Group Theory Conference (Bressanone, 1989) Rend. Circ. Mat. Palermo (2) Suppl. No. 23 (1990), 209-219. Zbl 0705.20033, MR 1068362
Reference: [5] Ol'shanskiĭ, A. Yu.: Geometry of Defining Relations in Groups.Mathematics and Its Applications. Soviet Series 70, Kluwer Academic Publishers, Dordrecht (1991). Zbl 0732.20019, MR 1191619, 10.1007/978-94-011-3618-1
Reference: [6] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1
Reference: [7] Wilkens, B.: More on core-2 2-groups.J. Group Theory 20 (2017), 193-225. Zbl 1370.20017, MR 3619126, 10.1515/jgth-2016-0035
.

Files

Files Size Format View
CzechMathJ_68-2018-2_12.pdf 244.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo