Title:
|
Every $2$-group with all subgroups normal-by-finite is locally finite (English) |
Author:
|
Jabara, Enrico |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
491-496 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A group $G$ has all of its subgroups normal-by-finite if $H/H_{G}$ is finite for all subgroups $H$ of $G$. The Tarski-groups provide examples of $p$-groups ($p$ a ``large'' prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a $2$-group with every subgroup normal-by-finite is locally finite. We also prove that if $| H/H_{G} | \leq 2$ for every subgroup $H$ of $G$, then $G$ contains an Abelian subgroup of index at most $8$. (English) |
Keyword:
|
$2$-group |
Keyword:
|
locally finite group |
Keyword:
|
normal-by-finite subgroup |
Keyword:
|
core-finite group |
MSC:
|
20D15 |
MSC:
|
20F14 |
MSC:
|
20F50 |
idZBL:
|
Zbl 06890385 |
idMR:
|
MR3819186 |
DOI:
|
10.21136/CMJ.2018.0504-16 |
. |
Date available:
|
2018-06-11T10:55:59Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147231 |
. |
Reference:
|
[1] Buckley, J. T., Lennox, J. C., Neumann, B. H., Smith, H., Wiegold, J.: Groups with all subgroups normal-by-finite.J. Aust. Math. Soc., Ser. A 59 (1995), 384-398. Zbl 0853.20023, MR 1355229, 10.1017/S1446788700037289 |
Reference:
|
[2] Cutolo, G., Khukhro, E. I., Lennox, J. C., Rinauro, S., Smith, H., Wiegold, J.: Locally finite groups all of whose subgroups are boundedly finite over their cores.Bull. Lond. Math. Soc. 29 (1997), 563-570. Zbl 0904.20030, MR 1458716, 10.1112/S0024609397003068 |
Reference:
|
[3] Kegel, O. H., Wehrfritz, B. A. F.: Locally Finite Groups.North-Holland Mathematical Library 3, North-Holland Publishing, Amsterdam (1973). Zbl 0259.20001, MR 0470081 |
Reference:
|
[4] Lennox, J. C., Hassanabadi, A. Mohammadi, Stewart, A. G. R., Wiegold, J.: Nilpotent extensibility and centralizers in infinite 2-groups.Proceedings of the Second International Group Theory Conference (Bressanone, 1989) Rend. Circ. Mat. Palermo (2) Suppl. No. 23 (1990), 209-219. Zbl 0705.20033, MR 1068362 |
Reference:
|
[5] Ol'shanskiĭ, A. Yu.: Geometry of Defining Relations in Groups.Mathematics and Its Applications. Soviet Series 70, Kluwer Academic Publishers, Dordrecht (1991). Zbl 0732.20019, MR 1191619, 10.1007/978-94-011-3618-1 |
Reference:
|
[6] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1 |
Reference:
|
[7] Wilkens, B.: More on core-2 2-groups.J. Group Theory 20 (2017), 193-225. Zbl 1370.20017, MR 3619126, 10.1515/jgth-2016-0035 |
. |