Previous |  Up |  Next

Article

Title: On the weighted estimate of the Bergman projection (English)
Author: Sehba, Benoît Florent
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 497-511
Summary lang: English
.
Category: math
.
Summary: We present a proof of the weighted estimate of the Bergman projection that does not use extrapolation results. This estimate is extended to product domains using an adapted definition of Békollé-Bonami weights in this setting. An application to bounded Toeplitz products is also given. (English)
Keyword: Bergman space
Keyword: reproducing kernel
Keyword: Toeplitz operator
Keyword: Békollé-Bonami weight
MSC: 30H20
MSC: 42A61
MSC: 42C40
MSC: 47B35
MSC: 47B38
idZBL: Zbl 06890386
idMR: MR3819187
DOI: 10.21136/CMJ.2018.0531-16
.
Date available: 2018-06-11T10:56:27Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147232
.
Reference: [1] Aleman, A., Pott, S., Reguera, M. C.: Sarason conjecture on the Bergman space.Int. Math. Res. Not. 2017 (2017), 4320-4349. MR 3674172, 10.1093/imrn/rnw134
Reference: [2] Bekollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de $\mathbb C^n$.Stud. Math. 71 (1982), 305-323 French. Zbl 0516.47016, MR 0667319, 10.4064/sm-71-3-305-323
Reference: [3] Bekollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman.C. R. Acad. Sci., Paris, Sér. A 286 (1978), 775-778 French. Zbl 0398.30006, MR 0497663
Reference: [4] Cruz-Uribe, D.: The invertibility of the product of unbounded Toeplitz operators.Integral Equations Oper. Theory 20 (1994), 231-237. Zbl 0817.47034, MR 1294717, 10.1007/BF01679672
Reference: [5] García-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies, 116 Notas de Matemática (104), North-Holland Publishing, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3
Reference: [6] Hytönen, T. P., Lacey, M. T., Pérez, C.: Sharp weighted bounds for the $q$-variation of singular integrals.Bull. Lond. Math. Soc. 45 (2013), 529-540. Zbl 1271.42021, MR 3065022, 10.1112/blms/bds114
Reference: [7] Hytönen, T., Pérez, C.: Sharp weighted bounds involving $A_{\infty}$.Anal. PDE 6 (2013), 777-818. Zbl 1283.42032, MR 3092729, 10.2140/apde.2013.6.777
Reference: [8] Isralowitz, J.: Invertible Toeplitz products, weighted norm inequalities, and $ A_p$ weights.J. Oper. Theory 71 (2014), 381-410. Zbl 1313.47059, MR 3214643, 10.7900/jot.2012apr10.1989
Reference: [9] Lerner, A. K.: A simple proof of the $A_2$ conjecture.Int. Math. Res. Not. 2013 (2013), 3159-3170. Zbl 1318.42018, MR 3085756, 10.1093/imrn/rns145
Reference: [10] Michalska, M., Nowak, M., Sobolewski, P.: Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball.Ann. Pol. Math. 99 (2010), 45-53. Zbl 1239.47021, MR 2660591, 10.4064/ap99-1-4
Reference: [11] Moen, K.: Sharp weighted bounds without testing or extrapolation.Arch. Math. 99 (2012), 457-466. Zbl 1266.42037, MR 3000426, 10.1007/s00013-012-0453-4
Reference: [12] Nazarov, F.: A counterexample to Sarason's conjecture.Preprint available at\ http://users.math.msu.edu/users/fedja/Preprints/Sarps.html.
Reference: [13] Pott, S., Reguera, M. C.: Sharp Békollé estimates for the Bergman projection.J. Funct. Anal. 265 (2013), 3233-3244. Zbl 1295.46020, MR 3110501, 10.1016/j.jfa.2013.08.018
Reference: [14] Pott, S., Strouse, E.: Products of Toeplitz operators on the Bergman spaces $A^2_\alpha$.Algebra Anal. 18 (2006), 144-161 translation in St. Petersbg. Math. J. 18 2007 105-118. Zbl 1127.47028, MR 2225216, 10.1090/S1061-0022-06-00945-9
Reference: [15] Sarason, D.: Products of Toeplitz operators.Linear and Complex Analysis Problem Book 3, Part I V. P. Havin, N. K. Nikolski Lecture Notes in Mathematics 1573, Springer, Berlin (1994), 318-319. Zbl 0893.30036, MR 1334345, 10.1007/BFb0100201
Reference: [16] Stroethoff, K., Zheng, D.: Bounded Toeplitz products on the Bergman space of the polydisk.J. Math. Anal. Appl. 278 (2003), 125-135. Zbl 1051.47025, MR 1963469, 10.1016/S0022-247X(02)00578-4
Reference: [17] Stroethoff, K., Zheng, D.: Bounded Toeplitz products on Bergman spaces of the unit ball.J. Math. Anal. Appl. 325 (2007), 114-129. Zbl 1111.32003, MR 2273032, 10.1016/j.jmaa.2006.01.009
Reference: [18] Stroethoff, K., Zheng, D.: Bounded Toeplitz products on weighted Bergman spaces.J. Oper. Theory 59 (2008), 277-308. Zbl 1199.47127, MR 2411047
.

Files

Files Size Format View
CzechMathJ_68-2018-2_13.pdf 314.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo