Title:
|
Finite groups whose all proper subgroups are $\mathcal {C}$-groups (English) |
Author:
|
Guo, Pengfei |
Author:
|
Liu, Jianjun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
513-522 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups. (English) |
Keyword:
|
normal subgroup |
Keyword:
|
abnormal subgroup |
Keyword:
|
minimal non-$\mathcal {C}$-group |
MSC:
|
20D10 |
MSC:
|
20E34 |
idZBL:
|
Zbl 06890387 |
idMR:
|
MR3819188 |
DOI:
|
10.21136/CMJ.2017.0542-16 |
. |
Date available:
|
2018-06-11T10:56:54Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147233 |
. |
Reference:
|
[1] Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups.Rev. Mat. Iberoam. 23 (2007), 127-142. Zbl 1126.20013, MR 2351128, 10.4171/RMI/488 |
Reference:
|
[2] Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S.: On finite minimal non-nilpotent groups.Proc. Am. Math. Soc. 133 (2005), 3455-3462. Zbl 1082.20006, MR 2163579, 10.1090/S0002-9939-05-07996-7 |
Reference:
|
[3] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen.Math. Z. 91 (1966), 198-205 German. Zbl 0135.05401, MR 0191962, 10.1007/BF01312426 |
Reference:
|
[4] Doerk, K., Hawkes, T.: Finite Soluble Groups.De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099, 10.1515/9783110870138 |
Reference:
|
[5] Laffey, T. J.: A lemma on finite $p$-groups and some consequences.Proc. Camb. Philos. Soc. 75 (1974), 133-137. Zbl 0277.20022, MR 0332961, 10.1017/S0305004100048350 |
Reference:
|
[6] Liu, J., Li, S., He, J.: CLT-groups with normal or abnormal subgroups.J. Algebra 362 (2012), 99-106. Zbl 1261.20027, MR 2921632, 10.1016/j.jalgebra.2012.03.042 |
Reference:
|
[7] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian.Trans. Amer. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. MR 1500650, 10.1090/S0002-9947-1903-1500650-9 |
Reference:
|
[8] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1982). Zbl 0483.20001, MR 0648604, 10.1007/978-1-4684-0128-8 |
Reference:
|
[9] Šmidt, O. J.: Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind.Math. Sbornik 31 (1924), 366-372 Russian with German résumé \99999JFM99999 50.0076.04. |
. |