Previous |  Up |  Next

Article

Title: Finite groups whose all proper subgroups are $\mathcal {C}$-groups (English)
Author: Guo, Pengfei
Author: Liu, Jianjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 513-522
Summary lang: English
.
Category: math
.
Summary: A group $G$ is said to be a $\mathcal {C}$-group if for every divisor $d$ of the order of $G$, there exists a subgroup $H$ of $G$ of order $d$ such that $H$ is normal or abnormal in $G$. We give a complete classification of those groups which are not $\mathcal {C}$-groups but all of whose proper subgroups are $\mathcal {C}$-groups. (English)
Keyword: normal subgroup
Keyword: abnormal subgroup
Keyword: minimal non-$\mathcal {C}$-group
MSC: 20D10
MSC: 20E34
idZBL: Zbl 06890387
idMR: MR3819188
DOI: 10.21136/CMJ.2017.0542-16
.
Date available: 2018-06-11T10:56:54Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147233
.
Reference: [1] Ballester-Bolinches, A., Esteban-Romero, R.: On minimal non-supersoluble groups.Rev. Mat. Iberoam. 23 (2007), 127-142. Zbl 1126.20013, MR 2351128, 10.4171/RMI/488
Reference: [2] Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S.: On finite minimal non-nilpotent groups.Proc. Am. Math. Soc. 133 (2005), 3455-3462. Zbl 1082.20006, MR 2163579, 10.1090/S0002-9939-05-07996-7
Reference: [3] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen.Math. Z. 91 (1966), 198-205 German. Zbl 0135.05401, MR 0191962, 10.1007/BF01312426
Reference: [4] Doerk, K., Hawkes, T.: Finite Soluble Groups.De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099, 10.1515/9783110870138
Reference: [5] Laffey, T. J.: A lemma on finite $p$-groups and some consequences.Proc. Camb. Philos. Soc. 75 (1974), 133-137. Zbl 0277.20022, MR 0332961, 10.1017/S0305004100048350
Reference: [6] Liu, J., Li, S., He, J.: CLT-groups with normal or abnormal subgroups.J. Algebra 362 (2012), 99-106. Zbl 1261.20027, MR 2921632, 10.1016/j.jalgebra.2012.03.042
Reference: [7] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian.Trans. Amer. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. MR 1500650, 10.1090/S0002-9947-1903-1500650-9
Reference: [8] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1982). Zbl 0483.20001, MR 0648604, 10.1007/978-1-4684-0128-8
Reference: [9] Šmidt, O. J.: Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind.Math. Sbornik 31 (1924), 366-372 Russian with German résumé \99999JFM99999 50.0076.04.
.

Files

Files Size Format View
CzechMathJ_68-2018-2_14.pdf 282.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo