Previous |  Up |  Next

Article

Title: Approximation properties for modified $(p,q)$-Bernstein-Durrmeyer operators (English)
Author: Mursaleen, Mohammad
Author: Alabied, Ahmed A. H.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 2
Year: 2018
Pages: 173-188
Summary lang: English
.
Category: math
.
Summary: We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators ${D}_{n,p,q}^{\ast }$ and compute the rate of convergence for the function $f$ belonging to the class ${\rm Lip}_{M}(\gamma )$. (English)
Keyword: $(p, q)$-integer
Keyword: $(p, q)$-Bernstein-Durrmeyer operator
Keyword: $q$-Bernstein-Durrmeyer operator
Keyword: modulus of continuity
Keyword: positive linear operator
Keyword: Korovkin type approximation theorem
MSC: 41A10
MSC: 41A25
MSC: 41A36
idZBL: Zbl 06890413
idMR: MR3831485
DOI: 10.21136/MB.2017.0086-16
.
Date available: 2018-06-11T11:01:48Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147243
.
Reference: [1] Acar, T.: Asymptotic formulas for generalized Szász-Mirakyan operators.Appl. Math. Comput. 263 (2015), 233-239. MR 3348539, 10.1016/j.amc.2015.04.060
Reference: [2] Acar, T.: $(p,q)$-generalization of Szász-Mirakyan operators.Math. Methods Appl. Sci. 39 (2016), 2685-2695. Zbl 1342.41019, MR 3512775, 10.1002/mma.3721
Reference: [3] Acar, T., Aral, A., Mohiuddine, S. A.: Approximation by bivariate $(p,q)$-Bernstein-Kantorovich operators.(to appear) in Iran. J. Sci. Technol., Trans. A, Sci. (first online in June 2016), 8 pages. MR 3806171, 10.1007/s40995-016-0045-4
Reference: [4] Acar, T., Aral, A., Mohiuddine, S. A.: On Kantorovich modification of $(p,q)$-Baskakov operators.J. Inequal. Appl. 2016 (2016), Paper No. 98, 14 pages. Zbl 1333.41007, MR 3479372, 10.1186/s13660-016-1045-9
Reference: [5] Acar, T., Ulusoy, G.: Approximation by modified Szász-Durrmeyer operators.Period. Math. Hung. 72 (2016), 64-75. MR 3470805, 10.1007/s10998-015-0091-2
Reference: [6] Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and Its Applications.de Gruyter Studies in Mathematics 17, Walter de Gruyter & Co., Berlin (1994). Zbl 0924.41001, MR 1292247, 10.1515/9783110884586
Reference: [7] Cai, Q. B., Zhou, G.: On $(p,q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators.Appl. Math. Comput. 276 (2016), 12-20. MR 3451993, 10.1016/j.amc.2015.12.006
Reference: [8] Chakrabarti, R., Jagannathan, R.: A $(p,q)$-oscillator realization of two parameter quantum algebras.J. Phys. A, Math. Gen. 24 (1991), L711--L718. Zbl 0735.17026, MR 1116019, 10.1088/0305-4470/24/13/002
Reference: [9] Gupta, V.: Some approximation properties of $q$-Durrmeyer operators.Appl. Math. Comput. 197 (2008), 172-178. Zbl 1142.41008, MR 2396302, 10.1016/j.amc.2007.07.056
Reference: [10] Hounkonnou, M.N., Kyemba, J. D. B.: $R(p,q)$-calculus: differentiation and integration.SUT J. Math. 49 (2013), 145-167. Zbl 06308085, MR 3222506
Reference: [11] Korovkin, P. P.: Linear Operators and Approximation Theory.Russian Monographs and Texts on Advanced Mathematics and Physics. Vol. III. Gordon and Breach Publishers, New York (1960). Zbl 0094.10201, MR 0150565
Reference: [12] Lupaş, A.: A $q$-analogue of the Bernstein operator.Prepr., "Babeş-Bolyai" Univ., Fac. Math., Res. Semin. 9 (1987), 85-92. Zbl 0684.41014, MR 0956939
Reference: [13] Milovanović, G. V., Gupta, V., Malik, N.: $(p,q)$-Beta functions and applications in approximation.(to appear) in Bol. Soc. Mat. Mex., III. Ser. (first online in June 2016), 19 pages (2016), 19 pages. MR 3773107, 10.1007/s40590-016-0139-1
Reference: [14] Mursaleen, M., Alotaibi, A., Ansari, K. J.: On a Kantorovich variant of $(p,q)$-Szász-Mirakjan operators.J. Funct. Spaces 2016 (2016), Article ID 1035253, 9 pages. Zbl 1337.41011, MR 3459656, 10.1155/2016/1035253
Reference: [15] Mursaleen, M., Ansari, K. J., Khan, A.: Some approximation results by $(p,q)$-analogue of Bernstein-Stancu operators.Appl. Math. Comput. 264 (2015), 392-402 corrigendum ibid. 269 2015 744-746. MR 3351620, 10.1016/j.amc.2015.03.135
Reference: [16] Mursaleen, M., Ansari, K. J., Khan, A.: On $(p,q)$-analogue of Bernstein operators.Appl. Math. Comput. 266 (2015), 874-882 corrigendum ibid. 278 2016 70-71. MR 3377604, 10.1016/j.amc.2015.04.090
Reference: [17] Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K. J.: Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p,q)$-integers.Filomat 30 (2016), 639-648. MR 3498662, 10.2298/FIL1603639M
Reference: [18] Mursaleen, M., Nasiuzzaman, Md., Nurgali, A.: Some approximation results on Bernstein-Schurer operators defined by $(p,q)$-integers.J. Inequal. Appl. 2015 (2015), Paper No. 249, 12 pages. Zbl 1334.41036, MR 3382856, 10.1186/s13660-015-0767-4
Reference: [19] Mursaleen, M., Sarsenbi, A. M., Khan, T.: On $(p,q)$-analogue of two parametric Stancu-beta operators.J. Inequal. Appl. 2016 (2016), Paper No. 190, 15 pages. Zbl 1347.41029, MR 3532366, 10.1186/s13660-016-1128-7
Reference: [20] Phillips, G. M.: Bernstein polynomials based on the $q$-integers.Ann. Numer. Math. 4 (1997), 511-518. Zbl 0881.41008, MR 1422700
Reference: [21] Sharma, H.: Note on approximation properties of generalized Durrmeyer operators.Math. Sci., Springer (electronic only) 6 (2012), Paper No. 24, 6 pages. Zbl 1264.41017, MR 3002753, 10.1186/2251-7456-6-24
Reference: [22] Sharma, H.: On Durrmeyer-type generalization of $(p,q)$-Bernstein operators.Arab. J. Math. 5 (2016), 239-248. Zbl 06682028, MR 3570370, 10.1007/s40065-016-0152-2
Reference: [23] Sharma, H., Gupta, C.: On $(p,q)$-generalization of Szász-Mirakyan-Kantorovich operators.Boll. Unione Mat. Ital. 8 (2015), 213-222. Zbl 1331.41030, MR 3425421, 10.1007/s40574-015-0038-9
Reference: [24] Ulusoy, G., Acar, T.: $q$-Voronovskaya type theorems for $q$-Baskakov operators.Math. Methods Appl. Sci. 39 (2016), 3391-3401. Zbl 1347.41030, MR 3521262, 10.1002/mma.3784
.

Files

Files Size Format View
MathBohem_143-2018-2_5.pdf 298.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo