Previous |  Up |  Next

Article

Title: Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus (English)
Author: Benhamida, Ghania
Author: Moussaoui, Toufik
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 2
Year: 2018
Pages: 189-200
Summary lang: English
.
Category: math
.
Summary: We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem $$ \begin {cases} \displaystyle -\biggl [M \biggl (\int _{Q}\dfrac {\vert u(x)-u(y)\vert ^{p}}{\vert x-y \vert ^{N+ps}} {\rm d}x {\rm d}y\biggr )\biggr ]^{p-1} (-\Delta )_{p}^{s}u=\lambda h(x,u) \quad \text {in}\ \Omega , \\ u=0 \quad \text {on}\ \mathbb {R}^N \setminus \Omega , \end {cases} $$ where $\Omega $ is an open bounded smooth domain of $\mathbb {R}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb {R}^{2N}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions. (English)
Keyword: existence results
Keyword: genus theory
Keyword: fractional $p$-Kirchhoff problem
MSC: 34A08
MSC: 35A15
MSC: 35B38
idZBL: Zbl 06890414
idMR: MR3831486
DOI: 10.21136/MB.2017.0010-17
.
Date available: 2018-06-11T11:02:43Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147244
.
Reference: [1] Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher order $p$-Kirchhoff problems.Commun. Contemp. Math. 16 (2014), Article ID 1450002, 43 pages. Zbl 1325.35129, MR 3253900, 10.1142/S0219199714500023
Reference: [2] Caffarelli, L.: Nonlocal equations, drifts and games.Nonlinear Partial Differential Equations. Abel Symposia, vol. {\it 7} H. Holden et al. Springer, Heidelberg (2012), 37-52. Zbl 1266.35060, MR 3289358, 10.1007/978-3-642-25361-4_3
Reference: [3] Castro, A.: Metodos variacionales y analisis functional no linear.X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980), Spain.
Reference: [4] Chen, J., Cheng, B., Tang, X.: New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional $p$-Laplacian with sign-changing potential.Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. MR 3742996, 10.1007/s13398-016-0372-5
Reference: [5] Chen, W., Deng, S.: Existence of solutions for a Kirchhoff type problem involving the fractional $p$-Laplace operator.Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 87, 8 pages. Zbl 1349.35088, MR 3434217, 10.14232/ejqtde.2015.1.87
Reference: [6] Cheng, K., Gao, Q.: Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R^{N}}$.Avaible at https://arxiv.org/abs/1701.03862v1.
Reference: [7] Clarke, D. C.: A variant of the Lusternik-Schnirelman theory.Math. J., Indiana Univ. 22 (1972), 65-74. Zbl 0228.58006, MR 0296777, 10.1512/iumj.1972.22.22008
Reference: [8] Colasuonno, F., Pucci, P.: Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5962-5974. Zbl 1232.35052, MR 2833367, 10.1016/j.na.2011.05.073
Reference: [9] Corrêa, F. J. S. A., Figueiredo, G. M.: On an elliptic equation of $p$-Kirchhoff-type via variational methods.Bull. Aust. Math. Soc. 74 (2006), 263-277. Zbl 1108.45005, MR 2260494, 10.1017/S000497270003570X
Reference: [10] Corrêa, F. J. S. A., Figueiredo, G. M.: On a $p$-Kirchhoff equation via Krasnoselskii's genus.Appl. Math. Lett. 22 (2009), 819-822. Zbl 1171.35371, MR 2523587, 10.1016/j.aml.2008.06.042
Reference: [11] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces.Bull. Sci. Math. 136 (2012), 521-573. Zbl 1252.46023, MR 2944369, 10.1016/j.bulsci.2011.12.004
Reference: [12] Dreher, M.: The Kirchhoff equation for the $p$-Laplacian.Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. Zbl 1178.35006, MR 2272915
Reference: [13] Goyal, S., Sreenadh, K.: Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions.Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. Zbl 1332.35375, MR 3432207, 10.1007/s12044-015-0244-5
Reference: [14] Kavian, O.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques.Mathématiques et Applications. Springer, Paris (1993). Zbl 0797.58005, MR 1276944
Reference: [15] Krasnoselsk'ii, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations.International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). Zbl 0111.30303, MR 0159197
Reference: [16] Bisci, G. Molica, Radulescu, V. D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems.Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). Zbl 1356.49003, MR 3445279, 10.1017/CBO9781316282397
Reference: [17] Ourraoui, A.: On a $p$-Kirchhoff problem involving a critical nonlinearity.C. R. Math., Acad. Sci. Paris 352 (2014), 295-298. Zbl 1298.35096, MR 3186916, 10.1016/j.crma.2014.01.015
Reference: [18] Peral, I.: Multiplicity of solutions for the $p$-Laplacian.Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997).
Reference: [19] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations.CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). Zbl 0609.58002, MR 0845785, 10.1090/cbms/065
Reference: [20] Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators.J. Math. Anal. Appl. 389 (2012), 887-898. Zbl 1234.35291, MR 2879266, 10.1016/j.jmaa.2011.12.032
Reference: [21] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian.Trans. Am. Math. Soc. 367 (2015), 67-102. Zbl 1323.35202, MR 3271254, 10.1090/S0002-9947-2014-05884-4
Reference: [22] Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator.Commun. Pure Appl. Math. 60 (2007), 67-112. Zbl 1141.49035, MR 2270163, 10.1002/cpa.20153
Reference: [23] Wang, L., Zhang, B.: Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional $p$-Laplacian and critical exponent.Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. Zbl 1353.35307, MR 3604784
Reference: [24] Zhang, L., Chen, Y.: Infinitely many solutions for sublinear indefinite nonlocal elliptic equations perturbed from symmetry.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. Zbl 06675023, MR 3596674, 10.1016/j.na.2016.12.001
.

Files

Files Size Format View
MathBohem_143-2018-2_6.pdf 307.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo