Previous |  Up |  Next

Article

Title: Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions (English)
Author: Kryštof, Václav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 223-231
Summary lang: English
.
Category: math
.
Summary: We prove that for a normed linear space $ X $, if $ f_1\colon X\to\mathbb{R} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\to\mathbb{R} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\leq f_2 $, then there exists $ f\in C^{1,\omega}(X) $ such that $ f_1\leq f\leq f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega(t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^{1,\omega}_{{loc}} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010. (English)
Keyword: Ilmanen lemma
Keyword: $ C^{1,\omega} $ function
Keyword: semiconvex function with general modulus
MSC: 26B25
idZBL: Zbl 06940865
idMR: MR3815687
DOI: 10.14712/1213-7243.2015.245
.
Date available: 2018-06-28T08:45:50Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147254
.
Reference: [1] Bernard P.: Lasry-Lions regularization and a lemma of Ilmanen.Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229. MR 2752687, 10.4171/RSMUP/124-15
Reference: [2] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. Zbl 1095.49003, MR 2041617
Reference: [3] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R.: Nonsmooth Analysis and Control Theory.Graduate Texts in Mathematics, 178, Springer, New York, 1998. MR 1488695
Reference: [4] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions.J. Convex Anal. 16 (2009), no. 1, 239–260. MR 2531202
Reference: [5] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces.J. Convex Anal. 20 (2013), no. 2, 573–598. MR 3098482
Reference: [6] Fathi A., Figalli A.: Optimal transportation on non-compact manifolds.Israel J. Math. 175 (2010), 1–59. MR 2607536, 10.1007/s11856-010-0001-5
Reference: [7] Fathi A., Zavidovique M.: Ilmanen's lemma on insertion of $ C^{1,1} $ functions.Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219. MR 2752686, 10.4171/RSMUP/124-14
Reference: [8] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces.De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl 1329.00102, MR 3244144
Reference: [9] Ilmanen T.: The level-set flow on a manifold.Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204. MR 1216585
Reference: [10] Jourani A., Thibault L., Zagrodny D.: $ C^{1,\omega (\cdot)} $-regularity and Lipschitz-like properties of subdifferential.Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223. MR 2948792, 10.1112/plms/pdr062
Reference: [11] Koc M., Kolář J.: Extensions of vector-valued functions with preservation of derivatives.J. Math. Anal. Appl. 449 (2017), no. 1, 343–367. MR 3595207, 10.1016/j.jmaa.2016.11.080
Reference: [12] Kryštof V.: Semiconvex Functions and Their Differences.Master Thesis, Charles University, Praha, 2016 (Czech).
Reference: [13] Rolewicz S.: On $ \alpha(\cdot ) $-paraconvex and strongly $ \alpha(\cdot ) $-paraconvex functions.Control Cybernet. 29 (2000), no. 1, 367–377. MR 1775171
Reference: [14] Rolewicz S.: On the coincidence of some subdifferentials in the class of $ \alpha(\cdot ) $-paraconvex functions.Optimization 50 (2001), no. 5–6, 353–360. MR 1892909, 10.1080/02331930108844568
Reference: [15] Toruńczyk H.: Smooth partitions of unity on some non-separable Banach spaces.Studia Math. 46 (1973), 43–51. MR 0339255, 10.4064/sm-46-1-43-51
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_7.pdf 273.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo