Title:
|
Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega} $ or $ C^{1,\omega}_{{\rm loc}} $ functions (English) |
Author:
|
Kryštof, Václav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
223-231 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that for a normed linear space $ X $, if $ f_1\colon X\to\mathbb{R} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\to\mathbb{R} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\leq f_2 $, then there exists $ f\in C^{1,\omega}(X) $ such that $ f_1\leq f\leq f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega(t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^{1,\omega}_{{loc}} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010. (English) |
Keyword:
|
Ilmanen lemma |
Keyword:
|
$ C^{1,\omega} $ function |
Keyword:
|
semiconvex function with general modulus |
MSC:
|
26B25 |
idZBL:
|
Zbl 06940865 |
idMR:
|
MR3815687 |
DOI:
|
10.14712/1213-7243.2015.245 |
. |
Date available:
|
2018-06-28T08:45:50Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147254 |
. |
Reference:
|
[1] Bernard P.: Lasry-Lions regularization and a lemma of Ilmanen.Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229. MR 2752687, 10.4171/RSMUP/124-15 |
Reference:
|
[2] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. Zbl 1095.49003, MR 2041617 |
Reference:
|
[3] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R.: Nonsmooth Analysis and Control Theory.Graduate Texts in Mathematics, 178, Springer, New York, 1998. MR 1488695 |
Reference:
|
[4] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions.J. Convex Anal. 16 (2009), no. 1, 239–260. MR 2531202 |
Reference:
|
[5] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces.J. Convex Anal. 20 (2013), no. 2, 573–598. MR 3098482 |
Reference:
|
[6] Fathi A., Figalli A.: Optimal transportation on non-compact manifolds.Israel J. Math. 175 (2010), 1–59. MR 2607536, 10.1007/s11856-010-0001-5 |
Reference:
|
[7] Fathi A., Zavidovique M.: Ilmanen's lemma on insertion of $ C^{1,1} $ functions.Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219. MR 2752686, 10.4171/RSMUP/124-14 |
Reference:
|
[8] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces.De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl 1329.00102, MR 3244144 |
Reference:
|
[9] Ilmanen T.: The level-set flow on a manifold.Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204. MR 1216585 |
Reference:
|
[10] Jourani A., Thibault L., Zagrodny D.: $ C^{1,\omega (\cdot)} $-regularity and Lipschitz-like properties of subdifferential.Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223. MR 2948792, 10.1112/plms/pdr062 |
Reference:
|
[11] Koc M., Kolář J.: Extensions of vector-valued functions with preservation of derivatives.J. Math. Anal. Appl. 449 (2017), no. 1, 343–367. MR 3595207, 10.1016/j.jmaa.2016.11.080 |
Reference:
|
[12] Kryštof V.: Semiconvex Functions and Their Differences.Master Thesis, Charles University, Praha, 2016 (Czech). |
Reference:
|
[13] Rolewicz S.: On $ \alpha(\cdot ) $-paraconvex and strongly $ \alpha(\cdot ) $-paraconvex functions.Control Cybernet. 29 (2000), no. 1, 367–377. MR 1775171 |
Reference:
|
[14] Rolewicz S.: On the coincidence of some subdifferentials in the class of $ \alpha(\cdot ) $-paraconvex functions.Optimization 50 (2001), no. 5–6, 353–360. MR 1892909, 10.1080/02331930108844568 |
Reference:
|
[15] Toruńczyk H.: Smooth partitions of unity on some non-separable Banach spaces.Studia Math. 46 (1973), 43–51. MR 0339255, 10.4064/sm-46-1-43-51 |
. |