Previous |  Up |  Next

Article

Title: A note on Dunford-Pettis like properties and complemented spaces of operators (English)
Author: Ghenciu, Ioana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 207-222
Summary lang: English
.
Category: math
.
Summary: Equivalent formulations of the Dunford-Pettis property of order $p$ (${DPP}_p$), $1<p<\infty$, are studied. Let $L(X,Y)$, $W(X,Y)$, $K(X,Y)$, $U(X,Y)$, and $C_p(X,Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and $p$-convergent operators from $X$ to $Y$. Classical results of Kalton are used to study the complementability of the spaces $W(X,Y)$ and $K(X,Y)$ in the space $C_p(X,Y)$, and of $C_p(X,Y)$ in $U(X,Y)$ and $L(X,Y)$. (English)
Keyword: Dunford-Pettis property of order $p$
Keyword: $p$-convergent operator
Keyword: complemented spaces of operators
MSC: 46B20
MSC: 46B25
MSC: 46B28
idZBL: Zbl 06940864
idMR: MR3815686
DOI: 10.14712/1213-7243.2015.238
.
Date available: 2018-06-28T08:44:32Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147255
.
Reference: [1] Bahreini M., Bator E., Ghenciu I.: Complemented subspaces of linear bounded operators.Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR 2957262, 10.4153/CMB-2011-097-2
Reference: [2] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [3] Castillo J. M. F., Sanchez F.: Dunford-Pettis like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
Reference: [4] Diestel J.: A survey of results related to the Dunford-Pettis property.Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60. Zbl 0571.46013, MR 0621850
Reference: [5] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
Reference: [6] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297
Reference: [7] Diestel J., Uhl J. J. Jr.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl 0521.46035, MR 0453964
Reference: [8] Drewnowski L., Emmanuele G.: On Banach spaces with the Gelfand-Phillips property II.Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. Zbl 0689.46004, MR 1053378, 10.1007/BF02850021
Reference: [9] Emmanuele G.: Remarks on the uncomplemented subspace $W(E,F)$.J. Funct. Anal. 99 (1991), no. 1, 125–130. MR 1120917, 10.1016/0022-1236(91)90055-A
Reference: [10] Emmanuele G.: A remark on the containment of $c_{0}$ in spaces of compact operators.Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [11] Emmanuele G., John K.: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J. 47(122) (1997), no. 1, 19–32. Zbl 0903.46006, MR 1435603, 10.1023/A:1022483919972
Reference: [12] Feder M.: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), no. 2, 196–205. MR 0575060
Reference: [13] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591
Reference: [14] Ghenciu I.: The $p$-Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets.available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages. MR 2283818
Reference: [15] Ghenciu I., Lewis P.: The Dunford-Pettis property, the Gelfand-Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11
Reference: [16] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$.Canadian J. Math. 5 (1953), 129–173 (French). Zbl 0050.10902, MR 0058866, 10.4153/CJM-1953-017-4
Reference: [17] John K.: On the uncomplemented subspace $ K(X,Y)$.Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173. MR 1152178
Reference: [18] Kalton N. J.: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [19] Lohman R. H.: A note on Banach spaces containing $l_1$.Canad. Math. Bull. 19 (1976), no. 3, 365–367. MR 0430748, 10.4153/CMB-1976-056-x
Reference: [20] Megginson R. E.: An Introduction to Banach Space Theory.Graduate Texts in Mathematics, 183, Springer, New York, 1998. Zbl 0910.46008, MR 1650235, 10.1007/978-1-4612-0603-3
Reference: [21] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295
Reference: [22] Salimi M., Moshtaghiun S. M.: The Gelfand-Phillips property in closed subspaces of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_6.pdf 318.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo