Title:
|
A note on Dunford-Pettis like properties and complemented spaces of operators (English) |
Author:
|
Ghenciu, Ioana |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
207-222 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Equivalent formulations of the Dunford-Pettis property of order $p$ (${DPP}_p$), $1<p<\infty$, are studied. Let $L(X,Y)$, $W(X,Y)$, $K(X,Y)$, $U(X,Y)$, and $C_p(X,Y)$ denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and $p$-convergent operators from $X$ to $Y$. Classical results of Kalton are used to study the complementability of the spaces $W(X,Y)$ and $K(X,Y)$ in the space $C_p(X,Y)$, and of $C_p(X,Y)$ in $U(X,Y)$ and $L(X,Y)$. (English) |
Keyword:
|
Dunford-Pettis property of order $p$ |
Keyword:
|
$p$-convergent operator |
Keyword:
|
complemented spaces of operators |
MSC:
|
46B20 |
MSC:
|
46B25 |
MSC:
|
46B28 |
idZBL:
|
Zbl 06940864 |
idMR:
|
MR3815686 |
DOI:
|
10.14712/1213-7243.2015.238 |
. |
Date available:
|
2018-06-28T08:44:32Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147255 |
. |
Reference:
|
[1] Bahreini M., Bator E., Ghenciu I.: Complemented subspaces of linear bounded operators.Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR 2957262, 10.4153/CMB-2011-097-2 |
Reference:
|
[2] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105 |
Reference:
|
[3] Castillo J. M. F., Sanchez F.: Dunford-Pettis like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024 |
Reference:
|
[4] Diestel J.: A survey of results related to the Dunford-Pettis property.Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60. Zbl 0571.46013, MR 0621850 |
Reference:
|
[5] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004 |
Reference:
|
[6] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297 |
Reference:
|
[7] Diestel J., Uhl J. J. Jr.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl 0521.46035, MR 0453964 |
Reference:
|
[8] Drewnowski L., Emmanuele G.: On Banach spaces with the Gelfand-Phillips property II.Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. Zbl 0689.46004, MR 1053378, 10.1007/BF02850021 |
Reference:
|
[9] Emmanuele G.: Remarks on the uncomplemented subspace $W(E,F)$.J. Funct. Anal. 99 (1991), no. 1, 125–130. MR 1120917, 10.1016/0022-1236(91)90055-A |
Reference:
|
[10] Emmanuele G.: A remark on the containment of $c_{0}$ in spaces of compact operators.Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. MR 1142753, 10.1017/S0305004100075435 |
Reference:
|
[11] Emmanuele G., John K.: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J. 47(122) (1997), no. 1, 19–32. Zbl 0903.46006, MR 1435603, 10.1023/A:1022483919972 |
Reference:
|
[12] Feder M.: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), no. 2, 196–205. MR 0575060 |
Reference:
|
[13] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591 |
Reference:
|
[14] Ghenciu I.: The $p$-Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets.available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages. MR 2283818 |
Reference:
|
[15] Ghenciu I., Lewis P.: The Dunford-Pettis property, the Gelfand-Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11 |
Reference:
|
[16] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$.Canadian J. Math. 5 (1953), 129–173 (French). Zbl 0050.10902, MR 0058866, 10.4153/CJM-1953-017-4 |
Reference:
|
[17] John K.: On the uncomplemented subspace $ K(X,Y)$.Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173. MR 1152178 |
Reference:
|
[18] Kalton N. J.: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152 |
Reference:
|
[19] Lohman R. H.: A note on Banach spaces containing $l_1$.Canad. Math. Bull. 19 (1976), no. 3, 365–367. MR 0430748, 10.4153/CMB-1976-056-x |
Reference:
|
[20] Megginson R. E.: An Introduction to Banach Space Theory.Graduate Texts in Mathematics, 183, Springer, New York, 1998. Zbl 0910.46008, MR 1650235, 10.1007/978-1-4612-0603-3 |
Reference:
|
[21] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295 |
Reference:
|
[22] Salimi M., Moshtaghiun S. M.: The Gelfand-Phillips property in closed subspaces of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004 |
. |