| Title:
|
Isometric embeddings of a class of separable metric spaces into Banach spaces (English) |
| Author:
|
Mercourakis, Sophocles K. |
| Author:
|
Vassiliadis, Vassiliadis G. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
59 |
| Issue:
|
2 |
| Year:
|
2018 |
| Pages:
|
233-239 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let $(M,d)$ be a bounded countable metric space and $c>0$ a constant, such that $d(x,y)+d(y,z)-d(x,z)\geq c$, for any pairwise distinct points $x,y,z$ of $M$. For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of $\ell_\infty $. (English) |
| Keyword:
|
concave metric space |
| Keyword:
|
isometric embedding |
| Keyword:
|
separated set |
| MSC:
|
46B20 |
| MSC:
|
46B26 |
| MSC:
|
46E15 |
| MSC:
|
54D30 |
| idZBL:
|
Zbl 06940866 |
| idMR:
|
MR3815688 |
| DOI:
|
10.14712/1213-7243.2015.239 |
| . |
| Date available:
|
2018-06-28T08:46:50Z |
| Last updated:
|
2020-07-06 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147256 |
| . |
| Reference:
|
[1] Braß P.: On equilateral simplices in normed spaces.Beiträge Algebra Geom. 40 (1999), no. 2, 303–307. MR 1720106 |
| Reference:
|
[2] Elton J., Odell E.: The unit ball of every infinite-dimensional normed linear space contains a $(1+\varepsilon)$-separated sequence.Colloq. Math. 44 (1981), no. 1, 105–109. MR 0633103, 10.4064/cm-44-1-105-109 |
| Reference:
|
[3] Glakousakis E., Mercourakis S.: On the existence of $1$-separated sequences on the unit ball of a finite-dimensional Banach space.Mathematika 61 (2015), no. 3, 547–558. MR 3415641, 10.1112/S002557931400028X |
| Reference:
|
[4] Kilbane J.: On embeddings of finite subsets of $l_2$.available at arXiv:1609.08971v2 [math.FA] (2016), 12 pages. MR 3767362 |
| Reference:
|
[5] Mercourakis S. K., Vassiliadis G.: Equilateral sets in infinite dimensional Banach spaces.Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212. MR 3119196, 10.1090/S0002-9939-2013-11746-6 |
| Reference:
|
[6] Ostrovskii M. I.: Metric Embeddings. Bilipschitz and Coarse Embeddings into Banach Spaces.De Gruyter Studies in Mathematics, 49, De Gruyter, Berlin, 2013. MR 3114782 |
| Reference:
|
[7] Partington J. R.: Subspaces of certain Banach sequence spaces.Bull. London Math. Soc. 13 (1981), no. 2, 162–166. MR 0608103, 10.1112/blms/13.2.162 |
| Reference:
|
[8] Swanepoel K. J.: Equilateral sets in finite-dimensional normed spaces.Seminar of Mathematical Analysis, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004, pp. 195–237. MR 2117069 |
| Reference:
|
[9] Swanepoel K. J., Villa R.: A lower bound for the equilateral number of normed spaces.Proc. Amer. Math. Soc. 136 (2008), no. 1, 127–131. MR 2350397, 10.1090/S0002-9939-07-08916-2 |
| Reference:
|
[10] Swanepoel K. J., Villa R.: Maximal equilateral sets.Discrete Comput. Geom. 50 (2013) no. 2, 354–373. MR 3090523, 10.1007/s00454-013-9523-z |
| Reference:
|
[11] Talagrand M.: Sur les espaces de Banach contenant $l_1(\tau)$.Israel J. Math. 40 (1981) no. 3–4, 324–330 (French. English summary). MR 0654587, 10.1007/BF02761372 |
| . |