Previous |  Up |  Next

Article

Title: The virtual element method for eigenvalue problems with potential terms on polytopic meshes (English)
Author: Čertík, Ondřej
Author: Gardini, Francesca
Author: Manzini, Gianmarco
Author: Vacca, Giuseppe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 3
Year: 2018
Pages: 333-365
Summary lang: English
.
Category: math
.
Summary: We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues. (English)
Keyword: conforming virtual element
Keyword: eigenvalue problem
Keyword: Hamiltonian equation
Keyword: polygonal mesh
MSC: 65L15
MSC: 65L60
MSC: 65L70
MSC: 65N25
MSC: 65N30
idZBL: Zbl 06945736
idMR: MR3833664
DOI: 10.21136/AM.2018.0093-18
.
Date available: 2018-07-16T08:52:18Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147314
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Agmon, S.: Lectures on Elliptic Boundary Value Problems.Van Nostrand Mathematical Studies 2, Princeton, Toronto (1965). Zbl 0142.37401, MR 0178246
Reference: [3] Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L. D., Russo, A.: Equivalent projectors for virtual element methods.Comput. Math. Appl. 66 (2013), 376-391. Zbl 1347.65172, MR 3073346, 10.1016/j.camwa.2013.05.015
Reference: [4] Antonietti, P. F., Veiga, L. Beirão da, Scacchi, S., Verani, M.: A $C^1$ virtual element method for the Cahn-Hilliard equation with polygonal meshes.SIAM J. Numer. Anal. 54 (2016), 34-56. Zbl 1336.65160, MR 3439765, 10.1137/15M1008117
Reference: [5] Antonietti, P. F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems.Math. Models Methods Appl. Sci. 28 (2018), 387-407. Zbl 1381.65090, MR 3741104, 10.1142/S0218202518500100
Reference: [6] Antonietti, P. F., Mascotto, L., Verani, M.: A multigrid algorithm for the $p$-version of the virtual element method.ESAIM, Math. Model. Numer. Anal. 52 (2018), 337-364. MR 3808163, 10.1051/m2an/2018007
Reference: [7] Artioli, E., Miranda, S. De, Lovadina, C., Patruno, L.: A stress/displacement Virtual Element method for plane elasticity problems.Comput. Meth. Appl. Mech. Eng. 325 (2017), 155-174. MR 3693423, 10.1016/j.cma.2017.06.036
Reference: [8] Dios, B. Ayuso de, Lipnikov, K., Manzini, G.: The nonconforming virtual element method.ESAIM, Math. Model. Numer. Anal. 50 (2016), 879-904. Zbl 1343.65140, MR 3507277, 10.1051/m2an/2015090
Reference: [9] Babuška, I., Osborn, J.: Eigenvalue problems.Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) P. G. Ciarlet North-Holland, Amsterdam (1991), 641-787. Zbl 0875.65087, MR 1115240, 10.1016/s1570-8659(05)80042-0
Reference: [10] Bader, R. F. W.: A quantum theory of molecular structure and its applications.Chem. Rev. 91 (1991), 893-928. 10.1021/cr00005a013
Reference: [11] Veiga, L. Beirão da, Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A.: Basic principles of virtual element methods.Math. Models Methods Appl. Sci. 23 (2013), 199-214. Zbl 06144424, MR 2997471, 10.1142/S0218202512500492
Reference: [12] Veiga, L. Beirão da, Brezzi, F., Dassi, F., Marini, L. D., Russo, A.: Virtual element approximation of 2D magnetostatic problems.Comput. Methods Appl. Mech. Eng. 327 (2017), 173-195. MR 3725767, 10.1016/j.cma.2017.08.013
Reference: [13] Veiga, L. Beirão da, Brezzi, F., Dassi, F., Marini, L. D., Russo, A.: Serendipity virtual elements for general elliptic equations in three dimensions.Chin. Ann. Math., Ser. B 39 (2018), 315-334. Zbl 06877227, MR 3757651, 10.1007/s11401-018-1066-4
Reference: [14] Veiga, L. Beirão da, Brezzi, F., Marini, L. D., Russo, A.: The Hitchhiker's guide to the virtual element method.Math. Models Methods Appl. Sci. 24 (2014), 1541-1573. Zbl 1291.65336, MR 3200242, 10.1142/S021820251440003X
Reference: [15] Veiga, L. Beirão da, Brezzi, F., Marini, L. D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes.Math. Models Methods Appl. Sci. 26 (2016), 729-750. Zbl 1332.65162, MR 3460621, 10.1142/S0218202516500160
Reference: [16] Veiga, L. Beirão da, Chernov, A., Mascotto, L., Russo, A.: Basic principles of $hp$ virtual elements on quasiuniform meshes.Math. Models Methods Appl. Sci. 26 (2016), 1567-1598. Zbl 1344.65109, MR 3509090, 10.1142/S021820251650038X
Reference: [17] Veiga, L. Beirão da, Dassi, F., Russo, A.: High-order virtual element method on polyhedral meshes.Comput. Math. Appl. 74 (2017), 1110-1122. Zbl 06890717, MR 3689939, 10.1016/j.camwa.2017.03.021
Reference: [18] Veiga, L. Beirão da, Lipnikov, K., Manzini, G.: Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes.SIAM J. Numer. Anal. 49 (2011), 1737-1760. Zbl 1242.65215, MR 2837482, 10.1137/100807764
Reference: [19] Veiga, L. Beirão da, Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems.MS&A. Modeling, Simulation and Applications 11, Springer, Cham (2014). Zbl 1286.65141, MR 3135418, 10.1007/978-3-319-02663-3
Reference: [20] Veiga, L. Beirão da, Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes.ESAIM, Math. Model. Numer. Anal. 51 (2017), 509-535. Zbl 06706760, MR 3626409, 10.1051/m2an/2016032
Reference: [21] Veiga, L. Beirão da, Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes.SIAM J. Numer. Anal. 56 (2018), 1210-1242. Zbl 06870040, MR 3796371, 10.1137/17M1132811
Reference: [22] Veiga, L. Beirão da, Manzini, G.: A virtual element method with arbitrary regularity.IMA J. Numer. Anal. 34 (2014), 759-781. Zbl 1293.65146, MR 3194807, 10.1093/imanum/drt018
Reference: [23] Veiga, L. Beirão da, Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems.ESAIM, Math. Model. Numer. Anal. 49 (2015), 577-599. Zbl 1346.65056, MR 3342219, 10.1051/m2an/2014047
Reference: [24] Veiga, L. Beirão da, Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem.Numer. Math. 136 (2017), 725-763. Zbl 06751908, MR 3660301, 10.1007/s00211-016-0855-5
Reference: [25] Veiga, L. Beirão da, Russo, A., Vacca, G.: The virtual element method with curved edges.Available at https://arxiv.org/abs/1711.04306 29 pages (2017). MR 3939306
Reference: [26] Benedetto, M. F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: A hybrid mortar virtual element method for discrete fracture network simulations.J. Comput. Phys. 306 (2016), 148-166. Zbl 1351.76048, MR 3432346, 10.1016/j.jcp.2015.11.034
Reference: [27] Boffi, D.: Finite element approximation of eigenvalue problems.Acta Numerica 19 (2010), 1-120. Zbl 1242.65110, MR 2652780, 10.1017/S0962492910000012
Reference: [28] Brezzi, F., Marini, L. D.: Virtual element methods for plate bending problems.Comput. Methods Appl. Mech. Eng. 253 (2013), 455-462. Zbl 1297.74049, MR 3002804, 10.1016/j.cma.2012.09.012
Reference: [29] Cáceres, E., Gatica, G. N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem.IMA J. Numer. Anal. 37 (2017), 296-331. MR 3614887, 10.1016/j.camwa.2017.03.021
Reference: [30] Cai, Y., Bai, Z., Pask, J. E., Sukumar, N.: Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations.J. Comput. Phys. 255 (2013), 16-30. Zbl 1349.81204, MR 3109776, 10.1016/j.jcp.2013.07.020
Reference: [31] Cangiani, A., Gardini, F., Manzini, G.: Convergence of the mimetic finite difference method for eigenvalue problems in mixed form.Comput. Methods Appl. Mech. Eng. 200 (2011), 1150-1160. Zbl 1225.65106, MR 2796151, 10.1016/j.cma.2010.06.011
Reference: [32] Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations.SIAM J. Numer. Anal. 54 (2016), 3411-3435. Zbl 06662515, MR 3576570, 10.1137/15M1049531
Reference: [33] Cangiani, A., Manzini, G., Russo, A., Sukumar, N.: Hourglass stabilization and the virtual element method.Int. J. Numer. Meth. Eng. 102 (2015), 404-436. Zbl 1352.65475, MR 3340083, 10.1002/nme.4854
Reference: [34] Cangiani, A., Manzini, G., Sutton, O.: Conforming and nonconforming virtual element methods for elliptic problems.IMA J. Numer. Anal. Analysis 37 (2017), 1317-1354. MR 3671497, 10.1093/imanum/drw036
Reference: [35] Chi, H., Veiga, L. Beirão da, Paulino, G. H.: Some basic formulations of the virtual element method (VEM) for finite deformations.Comput. Methods Appl. Mech. Eng. 318 (2017), 148-192. MR 3627175, 10.1016/j.cma.2016.12.020
Reference: [36] Dassi, F., Mascotto, L.: Exploring high-order three dimensional virtual elements: bases and stabilizations.Comput. Math. Appl. 75 (2018), 3379-3401. MR 3785566, 10.1016/j.camwa.2018.02.005
Reference: [37] Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions.Available at\ https://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2004).
Reference: [38] Ern, A., Guermond, J. L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159, Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [39] Gardini, F., Manzini, G., Vacca, G.: The nonconforming virtual element method for eigenvalue problems.Available at https://arxiv.org/abs/1802.02942 (2018), 22 pages. MR 3959470
Reference: [40] Gardini, F., Vacca, G.: Virtual element method for second-order elliptic eigenvalue problems.(to appear) in IMA J. Numer. Anal. 10.1093/imanum/drx063
Reference: [41] Grisvard, P.: Singularities in boundary value problems and exact controllability of hyperbolic systems.Optimization, Optimal Control and Partial Differential Equations V. Barbu et al. Internat. Ser. Numer. Math. 107, Birkhäuser, Basel (1992), 77-84. Zbl 0778.93007, MR 1223360, 10.1007/978-3-0348-8625-3_8
Reference: [42] Gross, E. K. U., Dreizler, R. M.: Density Functional Theory.Springer Science & Business Media 337 (2013). MR 2743724, 10.1007/978-1-4757-9975-0
Reference: [43] Kato, T.: Perturbation Theory for Linear Operators.Grundlehren der Mathematischen Wissenschaften 132, Springer, Berlin (1976). Zbl 0342.47009, MR 0407617
Reference: [44] Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method.J. Comput. Phys. 257 (2014), 1163-1227. Zbl 1352.65420, MR 3133437, 10.1016/j.jcp.2013.07.031
Reference: [45] Mascotto, L., Perugia, I., Pichler, A.: Non-conforming harmonic virtual element method: $h$-and $p$-versions.Available at https://arxiv.org/abs/1801.00578 (2018), 27 pages. MR 3874797
Reference: [46] Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem.Math. Models Methods Appl. Sci. 25 (2015), 1421-1445. Zbl 1330.65172, MR 3340705, 10.1142/S0218202515500372
Reference: [47] Mora, D., Rivera, G., Rodríguez, R.: A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem.Comput. Math. Appl. 74 (2017), 2172-2190. MR 3715326, 10.1016/j.camwa.2017.05.016
Reference: [48] Mora, D., Rivera, G., Velásquez, I.: A virtual element method for the vibration problem of Kirchhoff plates.(to appear) in ESAIM Math. Model. Numer. Anal. 10.1051/m2an/2017041
Reference: [49] Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem.Available at https://arxiv.org/abs/1803.01979 (2018), 24 pages. MR 3895875
Reference: [50] Pask, J. E., Klein, B. M., Sterne, P. A., Fong, C. Y.: Finite-element methods in electronic-structure theory.Comput. Phys. Commun. 135 (2001), 1-34. Zbl 0984.81038, MR 2700275, 10.1016/S0010-4655(00)00212-5
Reference: [51] Pask, J. E., Sterne, P. A.: Finite element methods in ab initio electronic structure calculations.Modelling Simul. Mater. Sci. Eng. 13 (2005), R71--R96. 10.1088/0965-0393/13/3/R01
Reference: [52] Pask, J. E., Sukumar, N.: Partition of unity finite element method for quantum mechanical materials calculations.Extreme Mechanics Letters 11 (2017), 8-17. 10.1016/j.eml.2016.11.003
Reference: [53] Pask, J. E., Sukumar, N., Guney, M., Hu, W.: Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms.Technical report LLNL-TR-470692, Department of Energy LDRD (2011), Available at https://e-reports-ext.llnl.gov/pdf/471660.pdf\kern0pt.
Reference: [54] Pickett, W. E.: Pseudopotential methods in condensed matter applications.Computer Physics Reports 9 (1989), 115-197. 10.1016/0167-7977(89)90002-6
Reference: [55] Sukumar, N., Pask, J. E.: Classical and enriched finite element formulations for Bloch-periodic boundary conditions.Int. J. Numer. Methods Eng. 77 (2009), 1121-1138. Zbl 1156.81313, MR 2490728, 10.1002/nme.2457
Reference: [56] Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes.Comput. Math. Appl. 74 (2017), 882-898. MR 3689924, 10.1016/j.camwa.2016.04.029
Reference: [57] Vacca, G.: An $H^1$-conforming virtual element for Darcy and Brinkman equations.Math. Models Methods Appl. Sci. 28 (2018), 159-194. Zbl 06818909, MR 3737081, 10.1142/S0218202518500057
Reference: [58] Wriggers, P., Rust, W. T., Reddy, B. D.: A virtual element method for contact.Comput. Mech. 58 (2016), 1039-1050. Zbl 06832903, MR 3572918, 10.1007/s00466-016-1331-x
Reference: [59] Yang, W., Ayers, P. W.: Density-functional theory.Computational Medicinal Chemistry for Drug Discovery CRC Press, Boca Raton (2003), 103-132.
.

Files

Files Size Format View
AplMat_63-2018-3_8.pdf 548.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo