Previous |  Up |  Next

Article

Title: Explicit finite element error estimates for nonhomogeneous Neumann problems (English)
Author: Li, Qin
Author: Liu, Xuefeng
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 3
Year: 2018
Pages: 367-379
Summary lang: English
.
Category: math
.
Summary: The paper develops an explicit a priori error estimate for finite element solution to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite element spaces is constructed and the explicit upper bound of the constant in the trace theorem is given. Numerical examples are shown in the final section, which implies the proposed error estimate has the convergence rate as $0.5$. (English)
Keyword: finite element methods
Keyword: nonhomogeneous Neumann problems
Keyword: explicit error estimates
MSC: 65N15
MSC: 65N30
idZBL: Zbl 06945737
idMR: MR3833665
DOI: 10.21136/AM.2018.0095-18
.
Date available: 2018-07-16T08:52:50Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147315
.
Reference: [1] Ainsworth, M., Vejchodský, T.: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems.Numer. Math. 119 (2011), 219-243. Zbl 1229.65194, MR 2836086, 10.1007/s00211-011-0384-1
Reference: [2] Ainsworth, M., Vejchodský, T.: Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension.Comput. Methods Appl. Mech. Eng. 281 (2014), 184-199. MR 3262938, 10.1016/j.cma.2014.08.005
Reference: [3] Babuška, I., Osborn, J.: Eigenvalue problems.Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part 1) P. G. Ciarlet, J. L. Lions North-Holland, Amsterdam (1991), 641-787. Zbl 0875.65087, MR 1115240
Reference: [4] Bermúdez, A., Rodríguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations.Numer. Math. 87 (2000), 201-227. Zbl 0998.76046, MR 1804656, 10.1007/s002110000175
Reference: [5] Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics.Cambridge University Press, Cambridge (2007). Zbl 1118.65117, MR 2322235, 10.1017/CBO9780511618635
Reference: [6] Bramble, J. H., Osborn, J. E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators.Mathematical Foundations of the Finite Element Method with Applications to PDE A. K. Aziz Academic Press, New York (1972), 387-408. Zbl 0264.35055, MR 0431740, 10.1016/b978-0-12-068650-6.50019-8
Reference: [7] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15, Springer, New York (1991). Zbl 0788.73002, MR 1115205, 10.1007/978-1-4612-3172-1
Reference: [8] Bucur, D., Ionescu, I. R.: Asymptotic analysis and scaling of friction parameters.Z. Angew. Math. Phys. 57 (2006), 1042-1056. Zbl 1106.35038, MR 2279256, 10.1007/s00033-006-0070-9
Reference: [9] Grisvard, P.: Elliptic Problems for Nonsmooth Domains.Monographs and Studies in Mathematics 24, Pitman, Boston (1985). Zbl 0695.35060, MR 0775683
Reference: [10] Kikuchi, F., Saito, H.: Remarks on a posteriori error estimation for finite element solutions.J. Comput. Appl. Math. 199 (2007), 329-336. Zbl 1109.65094, MR 2269515, 10.1016/j.cam.2005.07.031
Reference: [11] Kobayashi, K.: On the interpolation constants over triangular elements.Proceedings of the International Conference Applications of Mathematics 2015 J. Brandts et al. Czech Academy of Sciences, Institute of Mathematics, Praha (2015), 110-124. Zbl 1363.65014, MR 3700193
Reference: [12] Laugesen, R. S., Siudeja, B. A.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality.J. Differ. Equations 249 (2010), 118-135. Zbl 1193.35112, MR 2644129, 10.1016/j.jde.2010.02.020
Reference: [13] Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations.Appl. Math., Praha 58 (2013), 129-151. Zbl 1274.65296, MR 3034819, 10.1007/s10492-013-0007-5
Reference: [14] Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators.Appl. Math. Comput. 267 (2015), 341-355. MR 3399052, 10.1016/j.amc.2015.03.048
Reference: [15] Liu, X., Kikuchi, F.: Analysis and estimation of error constants for $P_0$ and $P_1$ interpolations over triangular finite elements.J. Math. Sci., Tokyo 17 (2010), 27-78. Zbl 1248.65118, MR 2676659
Reference: [16] Liu, X., Oishi, S.: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape.SIAM J. Numer. Anal. 51 (2013), 1634-1654. Zbl 1273.65179, MR 3061473, 10.1137/120878446
Reference: [17] Šebestová, I., Vejchodský, T.: Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants.SIAM J. Numer. Anal. 52 (2014), 308-329. Zbl 1287.35050, MR 3163245, 10.1137/13091467X
Reference: [18] Takayasu, A., Liu, X., Oishi, S.: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains.Nonlinear Theory and Its Applications 4 (2013), 34-61. 10.1587/nolta.4.34
Reference: [19] Yang, Y., Li, Q., Li, S.: Nonconforming finite element approximations of the Steklov eigenvalue problem.Appl. Numer. Math. 59 (2009), 2388-2401. Zbl 1190.65168, MR 2553141, 10.1016/j.apnum.2009.04.005
.

Files

Files Size Format View
AplMat_63-2018-3_9.pdf 305.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo