Previous |  Up |  Next

Article

Title: On the geometry of some solvable extensions of the Heisenberg group (English)
Author: Nasehi, Mehri
Author: Aghasi, Mansour
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 723-740
Summary lang: English
.
Category: math
.
Summary: In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field $X$ on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same length. Furthermore, we determine all homogeneous Lorentzian structures and their types on these spaces and give a complete and explicit description of all parallel and totally geodesic hypersurfaces of these spaces. The non-existence of harmonic maps in the non-abelian case is proved and it is shown that the existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can not be extended to their Lorentzian analogues. (English)
Keyword: generalized Ricci soliton
Keyword: harmonicity of vector field
Keyword: homogeneous Lorentzian structure
Keyword: parallel hypersurfaces
MSC: 53C30
MSC: 53C43
MSC: 53C50
idZBL: Zbl 06986968
idMR: MR3851887
DOI: 10.21136/CMJ.2018.0635-16
.
Date available: 2018-08-09T13:12:35Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147364
.
Reference: [1] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups.Adv. Geom. 15 (2015), 507-517. Zbl 1328.53062, MR 3406478, 10.1515/advgeom-2015-0025
Reference: [2] Batat, W., Gadea, P. M., Oubiña, J. A.: Homogeneous Riemannian structures on some solvable extensions of the Heisenberg group.Acta Math. Hung. 138 (2013), 341-364. Zbl 1299.53117, MR 3018195, 10.1007/s10474-012-0232-5
Reference: [3] Batat, W., Rahmani, S.: Isometries, geodesics and Jacobi fields of Lorentzian Heisenberg group.Mediterr. J. Math. 8 (2011), 411-430. Zbl 1232.53057, MR 2824590, 10.1007/s00009-010-0070-z
Reference: [4] Bouckaert, R. R.: A probabilistic line breaking algorithm.Advances in Artificial Intelligence. Proc. 16th Australian Conf. on AI, Perth, 2003 Lecture Notes in Comput. Sci. 2903. Lecture Notes in Artificial Intelligence. Springer, Berlin (2003), 390-401 T. D. Gedeon et al. Zbl 1205.68488, MR 2150003, 10.1007/b94701
Reference: [5] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups.J. Geom. Phys. 61 (2011), 498-515. Zbl 1221.53093, MR 2746133, 10.1016/j.geomphys.2010.11.001
Reference: [6] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces.Cent. Eur. J. Math. 10 (2012), 411-425. Zbl 1246.53083, MR 2886549, 10.2478/s11533-011-0109-9
Reference: [7] Calvaruso, G.: Three-dimensional homogeneous generalized Ricci solitons.Avaible at arXiv:1503.07767v2 [math.DG]. MR 3707300
Reference: [8] Calvaruso, G., López, M. Castrillón: Cyclic Lorentzian Lie groups.Geom. Dedicata 181 (2016), 119-136. Zbl 1341.53106, MR 3475742, 10.1007/s10711-015-0116-2
Reference: [9] Leo, B. De, Veken, J. Van Der: Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces.Geom. Dedicata 159 (2012), 373-387. Zbl 1247.53076, MR 2944538, 10.1007/s10711-011-9665-1
Reference: [10] Gadea, P. M., González-Dávila, J. C., Oubiña, J. A.: Cyclic metric Lie groups.Monatsh. Math. 176 (2015), 219-239. Zbl 1321.53057, MR 3302156, 10.1007/s00605-014-0692-5
Reference: [11] Gadea, P. M., Oubiña, J. A.: Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures.Houston J. Math. 18 (1992), 449-465. Zbl 0760.53029, MR 1181794
Reference: [12] Gil-Medrano, O., Hurtado, A.: Spacelike energy of timelike unit vector fields on a Lorentzian manifold.J. Geom. Phys. 51 (2004), 82-100. Zbl 1076.53086, MR 2078686, 10.1016/j.geomphys.2003.09.008
Reference: [13] Gray, A.: Einstein-like manifolds which are not Einstein.Geom. Dedicata 7 (1978), 259-280. Zbl 0378.53018, MR 0505561, 10.1007/BF00151525
Reference: [14] Nasehi, M.: Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds.Czech. Math. J. 66 (2016), 547-559. Zbl 06604485, MR 3519620, 10.1007/s10587-016-0274-x
Reference: [15] Nasehi, M., Aghasi, M.: On the geometrical properties of hypercomplex four-dimensional Lie groups.Georgian Math. J. 25, (2018), 1-10. MR 4069964, 10.1515/gmj-2018-0003
Reference: [16] Nurowski, P., Randall, M.: Generalized Ricci solitons.J. Geom. Anal. 26 (2016), 1280-1345. Zbl 1343.53018, MR 3472837, 10.1007/s12220-015-9592-8
Reference: [17] Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois.J. Geom. Phys. 9 (1992), 295-302 French. Zbl 0752.53036, MR 1171140, 10.1016/0393-0440(92)90033-W
Reference: [18] Rahmani, N., Rahmani, S.: Lorentzian geometry of the Heisenberg group.Geom. Dedicata 118 (2006), 133-140. Zbl 1094.53065, MR 2239452, 10.1007/s10711-005-9030-3
Reference: [19] Shin, H., Kim, Y. W., Koh, S.-E., Lee, H. Y., Yang, S.-D.: Ruled minimal surfaces in the three-dimensional Heisenberg group.Pac. J. Math. 261 (2013), 477-496. Zbl 1347.53050, MR 3037577, 10.2140/pjm.2013.261.477
.

Files

Files Size Format View
CzechMathJ_68-2018-3_11.pdf 344.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo