Previous |  Up |  Next

Article

Title: Restricted homological dimensions over local homomorphisms and Cohen-Macaulayness (English)
Author: Kong, Fangdi
Author: Wu, Dejun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 741-754
Summary lang: English
.
Category: math
.
Summary: We define and study restricted projective, injective and flat dimensions over local homomorphisms. Some known results are generalized. As applications, we show that (almost) Cohen-Macaulay rings can be characterized by restricted homological dimensions over local homomorphisms. (English)
Keyword: Cohen factorization
Keyword: restricted homological dimension
Keyword: Cohen-Macaulay ring
MSC: 13D02
MSC: 13D05
idZBL: Zbl 06986969
idMR: MR3851888
DOI: 10.21136/CMJ.2018.0638-16
.
Date available: 2018-08-09T13:12:58Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147365
.
Reference: [1] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [2] Avramov, L. L., Foxby, H.-B.: Homological dimensions of unbounded complexes.J. Pure Appl. Algebra 71 (1991), 129-155. Zbl 0737.16002, MR 1117631, 10.1016/0022-4049(91)90144-Q
Reference: [3] Avramov, L. L., Foxby, H.-B., Herzog, B.: Structure of local homomorphisms.J. Algebra 164 (1994), 124-145. Zbl 0798.13002, MR 1268330, 10.1006/jabr.1994.1057
Reference: [4] Avramov, L. L., Iyengar, S., Miller, C.: Homology over local homomorphisms.Am. J. Math. 128 (2006), 23-90. Zbl 1102.13011, MR 2197067, 10.1353/ajm.2006.0001
Reference: [5] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [6] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7
Reference: [7] Christensen, L. W., Foxby, H.-B., Frankild, A.: Restricted homological dimensions andCohen-Macaulayness.J. Algebra 251 (2002), 479-502. Zbl 1073.13501, MR 1900297, 10.1006/jabr.2001.9115
Reference: [8] Foxby, H.-B., Iyengar, S.: Depth and amplitude for unbounded complexes.Commutative algebra. Interactions with algebraic geometry L. L. Avramov, M. Chardin, M. Morales, C. Polini Contemporary Mathematics 331, American Mathematical Society, Providence (2003), 119-137. Zbl 1096.13516, MR 2013162, 10.1090/conm/331
Reference: [9] Iyengar, S.: Depth for complexes, and intersection theorems.Math. Z. 230 (1999), 545-567. Zbl 0927.13015, MR 1680036, 10.1007/PL00004705
Reference: [10] Iyengar, S., Sather-Wagstaff, S.: $G$-dimension over local homomorphisms. Applications to the Frobenius endomorphism.Ill. J. Math. 48 (2004), 241-272. Zbl 1103.13009, MR 2048224, 10.1215/ijm/1258136183
Reference: [11] Wu, D.: Gorenstein dimensions over ring homomorphisms.Commun. Algebra 43 (2015), 2005-2028. Zbl 1328.13017, MR 3316836, 10.1080/00927872.2014.881836
Reference: [12] Wu, D., Liu, Z.: On restricted injective dimensions of complexes.Commun. Algebra 41 (2013), 462-470. Zbl 1270.13011, MR 3011775, 10.1080/00927872.2012.656339
.

Files

Files Size Format View
CzechMathJ_68-2018-3_12.pdf 296.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo