Previous |  Up |  Next

Article

Title: Automorphisms of metacyclic groups (English)
Author: Chen, Haimiao
Author: Xiong, Yueshan
Author: Zhu, Zhongjian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 803-815
Summary lang: English
.
Category: math
.
Summary: A metacyclic group $H$ can be presented as $\langle \alpha ,\beta \colon \alpha ^{n}=1$, $ \beta ^{m}=\alpha ^{t}$, $\beta \alpha \beta ^{-1}=\nobreak \alpha ^{r}\rangle $ for some $n$, $m$, $t$, $r$. Each endomorphism $\sigma $ of $H$ is determined by $\sigma (\alpha )=\alpha ^{x_{1}}\beta ^{y_{1}}$, $ \sigma (\beta )=\alpha ^{x_{2}}\beta ^{y_{2}}$ for some integers $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$. We give sufficient and necessary conditions on $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$ for $\sigma $ to be an automorphism. (English)
Keyword: automorphism
Keyword: metacyclic group
Keyword: linear congruence equation
MSC: 20D45
idZBL: Zbl 06986973
idMR: MR3851892
DOI: 10.21136/CMJ.2017.0656-16
.
Date available: 2018-08-09T13:14:41Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147369
.
Reference: [1] Bidwell, J. N. S., Curran, M. J.: The automorphism group of a split metacyclic $p$-group.Arch. Math. 87 (2006), 488-497. Zbl 1116.20016, MR 2283679, 10.1007/s00013-006-1899-z
Reference: [2] Chen, H.-M.: Reduction and regular t-balanced Cayley maps on split metacyclic 2-groups.Available at ArXiv:1702.08351 [math.CO] (2017), 14 pages.
Reference: [3] Curran, M. J.: The automorphism group of a split metacyclic 2-group.Arch. Math. 89 (2007), 10-23. Zbl 1125.20015, MR 2322775, 10.1007/s00013-007-2107-5
Reference: [4] Curran, M. J.: The automorphism group of a nonsplit metacyclic $p$-group.Arch. Math. 90 (2008), 483-489. Zbl 1149.20019, MR 2415289, 10.1007/s00013-008-2583-2
Reference: [5] Davitt, R. M.: The automorphism group of a finite metacyclic $p$-group.Proc. Am. Math. Soc. 25 (1970), 876-879. Zbl 0202.02501, MR 0285594, 10.2307/2036770
Reference: [6] Golasiński, M., Gonçalves, D. L.: On automorphisms of split metacyclic groups.Manuscripta Math. 128 (2009), 251-273. Zbl 1160.20017, MR 2471317, 10.1007/s00229-008-0233-4
Reference: [7] Hempel, C. E.: Metacyclic groups.Commun. Algebra 28 (2000), 3865-3897. Zbl 0993.20013, MR 1767595, 10.1080/00927870008827063
Reference: [8] Zassenhaus, H. J.: The Theory of Groups.Chelsea Publishing Company, New York (1958). Zbl 0083.24517, MR 0091275
.

Files

Files Size Format View
CzechMathJ_68-2018-3_16.pdf 295.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo