Previous |  Up |  Next

Article

Title: On the nilpotent residuals of all subalgebras of Lie algebras (English)
Author: Meng, Wei
Author: Yao, Hailou
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 817-828
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\leq L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \geq 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$. (English)
Keyword: solvable Lie algebra
Keyword: nilpotent residual
Keyword: Frattini ideal
MSC: 17B05
MSC: 17B20
MSC: 17B30
MSC: 17B50
idZBL: Zbl 06986974
idMR: MR3851893
DOI: 10.21136/CMJ.2018.0006-17
.
Date available: 2018-08-09T13:15:06Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147370
.
Reference: [1] Barnes, D. W.: Nilpotency of Lie algebras.Math. Z. 79 (1962), 237-238. Zbl 0122.04001, MR 0150177, 10.1007/BF01193118
Reference: [2] Barnes, D. W.: On the cohomology of soluble Lie algebras.Math. Z. 101 (1967), 343-349. Zbl 0166.04102, MR 0220784, 10.1007/BF01109799
Reference: [3] Barnes, D. W.: The Frattini argument for Lie algebras.Math. Z. 133 (1973), 277-283. Zbl 0253.17003, MR 0330244, 10.1007/BF01177868
Reference: [4] Barnes, D. W., Gastineau-Hills, H. M.: On the theory of soluble Lie algebras.Math. Z. 106 (1968), 343-354. Zbl 0164.03701, MR 0232807, 10.1007/BF01115083
Reference: [5] Barnes, D. W., Newell, M. L.: Some theorems on saturated homomorphs of solvable Lie algebras.Math. Z. 115 (1970), 179-187. Zbl 0197.03003, MR 0266969, 10.1007/BF01109856
Reference: [6] Chen, L., Meng, D.: On the intersection of maximal subalgebras in a Lie superalgebra.Algebra Colloq. 16 (2009), 503-516. Zbl 1235.17009, MR 2536774, 10.1142/S1005386709000479
Reference: [7] Gong, L., Guo, X.: On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group.Algebra Colloq. 20 (2013), 349-360. Zbl 1281.20020, MR 3043320, 10.1142/S1005386713000321
Reference: [8] Gong, L., Guo, X.: On normalizers of the nilpotent residuals of subgroups of a finite group.Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 957-970. Zbl 06625446, MR 3515061, 10.1007/s40840-016-0338-y
Reference: [9] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory.Graduate Texts in Mathematics 9, Springer, New York (1972). Zbl 0254.17004, MR 0323842, 10.1007/978-1-4612-6398-2
Reference: [10] Marshall, E. I.: The Frattini subalgebra of a Lie algebra.J. Lond. Math. Soc. 42 (1967), 416-422. Zbl 0166.04101, MR 0217132, 10.1112/jlms/s1-42.1.416
Reference: [11] Schwarck, F.: Die Frattini-Algebra einer Lie-Algebra.Dissertation, Universität Kiel, Kiel German (1963).
Reference: [12] Shen, Z., Shi, W., Qian, G.: On the norm of the nilpotent residuals of all subgroups of a finite group.J. Algebra 352 (2012), 290-298. Zbl 1255.20019, MR 2862187, 10.1016/j.jalgebra.2011.11.018
Reference: [13] Stitzinger, E. L.: On the Frattini subalgebra of a Lie algebra.J. Lond. Math. Soc., II. Ser. 2 (1970), 429-438. Zbl 0201.03603, MR 0263885, 10.1112/jlms/2.Part_3.429
Reference: [14] Stitzinger, E. L.: Covering-avoidance for saturated formations of solvable Lie algebras.Math. Z. 124 (1982), 237-249. Zbl 0215.38601, MR 0297829, 10.1007/BF01110802
Reference: [15] Su, N., Wang, Y.: On the normalizers of $\frak{F}$-residuals of all subgroups of a finite group.J. Algebra 392 (2013), 185-198. Zbl 1312.20015, MR 3085030, 10.1016/j.jalgebra.2013.06.037
Reference: [16] Towers, D. A.: A Frattini theory for algebras.Proc. Lond. Math. Soc., III. Ser. 27 (1973), 440-462. Zbl 0267.17004, MR 0427393, 10.1112/plms/s3-27.3.440
Reference: [17] Towers, D. A.: Elementary Lie algebras.J. Lond. Math. Soc., II. Ser. 7 (1973), 295-302. Zbl 0267.17006, MR 0376782, 10.1112/jlms/s2-7.2.295
Reference: [18] Towers, D. A.: $c$-ideals of Lie algebras.Commun. Algebra 37 (2009), 4366-4373. Zbl 1239.17006, MR 2588856, 10.1080/00927870902829023
Reference: [19] Towers, D. A.: The index complex of a maximal subalgebra of a Lie algebra.Proc. Edinb. Math. Soc., II. Ser. 54 (2011), 531-542. Zbl 1228.17007, MR 2794670, 10.1017/S0013091509001035
Reference: [20] Towers, D. A.: Solvable complemented Lie algebras.Proc. Am. Math. Soc. 140 (2012), 3823-3830. Zbl 1317.17010, MR 2944723, 10.1090/S0002-9939-2012-11244-4
.

Files

Files Size Format View
CzechMathJ_68-2018-3_17.pdf 283.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo