Previous |  Up |  Next

Article

Title: Weighted generalization of the Ramadanov's theorem and further considerations (English)
Author: Pasternak-Winiarski, Zbigniew
Author: Wójcicki, Paweł
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 829-842
Summary lang: English
.
Category: math
.
Summary: We study the limit behavior of weighted Bergman kernels on a sequence of domains in a complex space $\mathbb C^N$, and show that under some conditions on domains and weights, weighed Bergman kernels converge uniformly on compact sets. Then we give a weighted generalization of the theorem given by M. Skwarczyński (1980), highlighting some special property of the domains, on which the weighted Bergman kernels converge uniformly. Moreover, we show that convergence of weighted Bergman kernels implies this property, which will give a characterization of the domains, for which the inverse of the Ramadanov's theorem holds. (English)
Keyword: weighted Bergman kernel
Keyword: admissible weight
Keyword: sequence of domains
MSC: 32A25
MSC: 32A36
idZBL: Zbl 06986975
idMR: MR3851894
DOI: 10.21136/CMJ.2018.0010-17
.
Date available: 2018-08-09T13:15:41Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147371
.
Reference: [1] Aronszajn, N.: Theory of reproducing kernels.Trans. Am. Math. Soc. 68 (1950), 337-404. Zbl 0037.20701, MR 0051437, 10.2307/1990404
Reference: [2] Bergman, S.: The Kernel Function and Conformal Mapping.Mathematical Surveys 5, American Mathematical Society, Providence (1970). Zbl 0208.34302, MR 0507701, 10.1090/surv/005
Reference: [3] Boas, H. P.: Counterexample to the Lu Qi-Keng conjecture.Proc. Am. Math. Soc. 97 (1986), 374-375. Zbl 0596.32032, MR 0835902, 10.2307/2046535
Reference: [4] Engliš, M.: Weighted Bergman kernels and quantization.Commun. Math. Phys. 227 (2002), 211-241. Zbl 1010.32002, MR 1903645, 10.1007/s002200200634
Reference: [5] Engliš, M.: Toeplitz operators and weighted Bergman kernels.J. Funct. Anal. 255 (2008), 1419-1457. Zbl 1155.32001, MR 2565714, 10.1016/j.jfa.2008.06.026
Reference: [6] Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls.Indiana Univ. Math. J. 24 (1974), 593-602. Zbl 0297.47041, MR 0357866, 10.1512/iumj.1974.24.24044
Reference: [7] Jacobson, R. L.: Weighted Bergman Kernel Functions and the Lu Qi-keng Problem. Thesis (Ph.D.).A&M University, Texas (2012). MR 3068007
Reference: [8] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis.De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). Zbl 1273.32002, MR 3114789, 10.1515/9783110253863
Reference: [9] Krantz, S. G.: Function Theory of Several Complex Variables.American Mathematical Society, Providence (2001). Zbl 1087.32001, MR 1846625, 10.1090/chel/340
Reference: [10] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric.Graduate Texts in Mathematics 268, Springer, New York (2013). Zbl 1281.32004, MR 3114665, 10.1007/978-1-4614-7924-6
Reference: [11] Ligocka, E.: On the Forelli-Rudin construction and weighted Bergman projections.Stud. Math. 94 (1989), 257-272. Zbl 0688.32020, MR 1019793, 10.4064/sm-94-3-257-272
Reference: [12] Odzijewicz, A.: On reproducing kernels and quantization of states.Commun. Math. Phys. 114 (1988), 577-597. Zbl 0645.53044, MR 0929131, 10.1007/BF01229456
Reference: [13] Pasternak-Winiarski, Z.: On the dependence of the reproducing kernel on the weight of integration.J. Funct. Anal. 94 (1990), 110-134. Zbl 0739.46010, MR 1077547, 10.1016/0022-1236(90)90030-O
Reference: [14] Pasternak-Winiarski, Z.: On weights which admit the reproducing kernel of Bergman type.Int. J. Math. Math. Sci. 15 (1992), 1-14. Zbl 0749.32019, MR 1143923, 10.1155/S0161171292000012
Reference: [15] Ramadanov, I.: Sur une propriété de la fonction de Bergman.C. R. Acad. Bulg. Sci. 20 (1967), 759-762 French. Zbl 0206.09002, MR 0226042
Reference: [16] Shabat, B. V.: Introduction to Complex Analysis. Part II: Functions of Several Variables.Translations of Mathematical Monographs 110, American Mathematical Society, Providence (1992). Zbl 0799.32001, MR 1192135, 10.1090/mmono/110
Reference: [17] Skwarczyński, M.: Biholomorphic invariants related to the Bergman function.Diss. Math. 173 (1980), 59 pages. Zbl 0443.32014, MR 0575756
Reference: [18] Skwarczyński, M., Iwiński, T.: The convergence of Bergman functions for a decreasing sequence of domains.Approximation Theory. Proc. Conf. Poznan 1972 Z. Ciesielski, J. Musielak D. Reidel, Dordrecht (1975), 117-120. Zbl 0328.30005, MR 0450534
Reference: [19] Skwarczyński, M., Mazur, T.: Wstepne twierdzenia teorii funkcji wielu zmiennych zespolonych.Wydawnictwo Krzysztof Biesaga, Warszawa (2001), Polish.
Reference: [20] Wójcicki, P. M.: Weighted Bergman kernel function, admissible weights and the Ramadanov theorem.Mat. Stud. 42 (2014), 160-164. Zbl 1327.32005, MR 3381259
.

Files

Files Size Format View
CzechMathJ_68-2018-3_18.pdf 317.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo