Previous |  Up |  Next

Article

Title: Optimal control of a frictionless contact problem with normal compliance (English)
Author: Touzaline, Arezki
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 3
Year: 2018
Pages: 327-342
Summary lang: English
.
Category: math
.
Summary: We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization of the model. We also introduce the regularized control problem for which we study the convergence when the regularization parameter tends to zero. (English)
Keyword: optimal control
Keyword: variational inequality
Keyword: linear elastic frictionless contact
Keyword: regularized problem
MSC: 47J20
MSC: 49J40
MSC: 74M10
idZBL: Zbl 06940874
idMR: MR3861556
DOI: 10.14712/1213-7243.2015.251
.
Date available: 2018-09-10T12:12:29Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147401
.
Reference: [1] Amassad A., Chenais D., Fabre C.: Optimal control of an elastic contact problem involving Tresca friction law.Nonlinear Anal. Ser. A: Theory Methods 48 (2002), no. 8, 1107–1135. MR 1880576
Reference: [2] Andersson L.-E.: A quasistatic frictional problem with normal compliance.Nonlinear Anal. 16 (1991), no. 4, 347–370. MR 1093846, 10.1016/0362-546X(91)90035-Y
Reference: [3] Barbu V.: Optimal Control of Variational Inequalities.Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, 1984. Zbl 0696.49021, MR 0742624
Reference: [4] Bartosz K., Kalita P.: Optimal control for a class of dynamic viscoelastic contact problems with adhesion.Dynam. Systems Appl. 21 (2012), no. 2–3, 269–292. MR 2918380
Reference: [5] Bonnans J. F., Tiba D.: Pontryagin's principle in the control of semiliniar elliptic variational inequalities.Appl. Mathem. Optim. 23 (1991), no. 3, 299–312. MR 1095664, 10.1007/BF01442403
Reference: [6] Capatina A., Timofte C.: Boundary optimal control for quasistatic bilateral frictional contact problems.Nonlinear Anal. 94 (2014), 84–99. MR 3120675, 10.1016/j.na.2013.08.004
Reference: [7] Denkowski Z., Migórski S., Ochal A.: Optimal control for a class of mechanical thermoviscoelastic frictional contact problems.Control Cybernet. 36 (2007), no. 3, 611–632. MR 2376043
Reference: [8] Denkowski Z., Migórski S., Ochal A.: A class of optimal control problems for piezoelectric frictional contact models.Nonlinear Anal. Real World Appl. 12 (2011), no. 3, 1883–1895. MR 2781904
Reference: [9] Friedman A.: Optimal control for variational inequalities.SIAM J. Control Optim. 24 (1986), no. 3, 439–451. MR 0838049, 10.1137/0324025
Reference: [10] Kikuchi N., Oden J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods.SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. MR 0961258
Reference: [11] Kimmerle S.-J., Moritz R.: Optimal control of an elastic Tyre-Damper system with road contact.(P. Steinmann, G. Leugering, eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014, 14 (2014), no. 1, 875–876.
Reference: [12] Klarbring A., Mikelić A., Shillor M.: Frictional contact problems with normal compliance.Internat. J. Engrg. Sci. 26 (1988), no. 8, 811–832. MR 0958441
Reference: [13] Klarbring A., Mikelić A., Shillor M.: On frictional problems with normal compliance.Nonlinear Anal. 13 (1989), no. 8, 935–955. MR 1009079
Reference: [14] Laursen T. A.: Computational Contact and Impact Mechanics.Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis, Springer, Berlin, 2002. MR 1902698
Reference: [15] Lions J.-L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles.Gauthier-Villars, Paris, 1968 (French). MR 0244606
Reference: [16] Martins J. A. C., Oden J. T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws.Nonlinear Anal. 11 (1987), no. 3, 407–428. MR 0881727, 10.1016/0362-546X(87)90055-1
Reference: [17] Matei A., Micu S.: Boundary optimal control for nonlinear antiplane problems.Nonlinear Anal. 74 (2011), no. 5, 1641–1652. MR 2764365, 10.1016/j.na.2010.10.034
Reference: [18] Matei A., Micu S.: Boundary optimal control for a frictional problem with normal compliance.Appl. Math. Optim. (2017), 23 pages.
Reference: [19] Mignot F.: Contrôle dans les inéquations variationnelles elliptiques.J. Functional Analysis 22 (1976), no. 2, 130–185 (French). MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [20] Mignot R., Puel J.-P.: Optimal control in some variational inequalities.SIAM J. Control Optim. 22 (1984), no. 3, 466–476. MR 0739836, 10.1137/0322028
Reference: [21] Neittaanmaki P., Sprekels J., Tiba D.: Optimization of Elliptic Systems: Theory and Applications.Springer Monographs in Mathematics, Springer, New York, 2006. MR 2183776
Reference: [22] Oden J. T., Martins J. A. C.: Models and computational methods for dynamic friction phenomena.Comput. Methods Appl. Mech. Engrg. 52 (1985), no. 1–3, 527–634. MR 0822757, 10.1016/0045-7825(85)90009-X
Reference: [23] Popov V. L.: Contact Mechanics and Friction.Physical Principles and Applications, Springer, Heidelberg, 2010.
Reference: [24] Rochdi M., Shillor M., Sofonea M.: Quasistatic viscoelastic contact with normal compliance and friction.J. Elasticity 51 (1998), no. 2, 105–126. MR 1664496, 10.1023/A:1007413119583
Reference: [25] Shillor M., Sofonea M., Telega J. J.: Models and Variational Analysis of Quasistatic Contact.Variational Methods, Lecture Notes in Physics, 655, Springer, Berlin, 2004. 10.1007/b99799
Reference: [26] Sofonea M., Matei A.: Variational Inequalities with Applications.A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, 18, Springer, 2009. MR 2488869
Reference: [27] Sofonea M., Matei A.: Mathematical Models in Contact Mechanics.London Mathematical Society, Lecture Note Series, 398, Cambridge University Press, 2012.
Reference: [28] Touzaline A.: Optimal control of a frictional contact problem.Acta Math. Appl. Sin. Engl. Ser. 31 (2015), no. 4, 991–1000. MR 3418276, 10.1007/s10255-015-0519-8
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-3_6.pdf 298.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo