Previous |  Up |  Next

Article

Title: Making holes in the cone, suspension and hyperspaces of some continua (English)
Author: Anaya, José G.
Author: Castañeda-Alvarado, Enrique
Author: Oca, Alejandro Fuentes-Montes de
Author: Orozco-Zitli, Fernando
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 3
Year: 2018
Pages: 343-364
Summary lang: English
.
Category: math
.
Summary: A connected topological space $Z$ is { unicoherent} provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ {makes a hole} in $Z$ if $Z-\{z\}$ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole. (English)
Keyword: continuum
Keyword: hyperspace
Keyword: hyperspace suspension
Keyword: property (b)
Keyword: unicoherence
Keyword: cone
Keyword: suspension
MSC: 54B15
MSC: 54B20
MSC: 54F55
idZBL: Zbl 06940875
idMR: MR3861557
DOI: 10.14712/1213-7243.2015.233
.
Date available: 2018-09-10T12:14:51Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147402
.
Reference: [1] Anaya J. G.: Making holes in hyperspaces.Topology Appl. 154 (2007), no. 10, 2000–2008. MR 2324910, 10.1016/j.topol.2006.09.017
Reference: [2] Anaya J. G.: Making holes in the hyperspaces of a Peano continuum.Topology Proc. 37 (2011), 1–14. MR 2594371
Reference: [3] Anaya J. G., Castañeda-Alvarado E., Martínez-Cortez J. A.: The fixed point property in symmetric products of some continua.Questions Answers Gen. Topology 34 (2016), no. 1, 29–36. MR 3467822
Reference: [4] Anaya J. G., Castañeda-Alvarado E., Orozco-Zitli F.: Making holes in the hyperspace of subcontinua of some continua.Adv. in Pure Math. 2 (2012), 133–138. 10.4236/apm.2012.22020
Reference: [5] Anaya J. G., Maya D., Orozco-Zitli F.: Making holes in the second symmetric products of dendrites and some fan.CIENCIA Ergo Sum 19 (2012), no. 1, 83–92.
Reference: [6] Borsuk K.: Quelques théorémes sur les ensembles unicoherents.Fund. Math. 17 (1931), 171–209 (French). 10.4064/fm-17-1-171-209
Reference: [7] Borsuk K., Ulam S.: On symmetric product of topological spaces.Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882. MR 1562283, 10.1090/S0002-9904-1931-05290-3
Reference: [8] Castañeda E.: Embedding symetric products in Euclidean spaces.Continuum theory, Denton, 1999, Lecture Notes in Pure and Appl. Math., 230, Marcel Dekker, New York, 2002, pp. 67–79. MR 2001435
Reference: [9] Castañeda E., Illanes A.: Finite graphs have unique symmetric products.Topology Appl. 153 (2006), no. 9, 1434–1450. Zbl 1095.54006, MR 2211209, 10.1016/j.topol.2005.04.006
Reference: [10] Eilenberg S.: Transformations continues en circonférence et la topologie du plan.Fund. Math. 26 (1936), 61–112 (French). 10.4064/fm-26-1-61-112
Reference: [11] Escobedo R., López M. de J., Macías S.: On the hyperspace suspension of a continuum.Topology Appl. 138 (2004), no. 1–3, 109–124. MR 2035475, 10.1016/j.topol.2003.08.024
Reference: [12] Ganea T.: Covering spaces and cartesian products.Ann. Soc. Polon. Math. 25 (1952), 30–42. MR 0056919
Reference: [13] García-Máynez A., Illanes A.: A survey on unicoherence and related properties.An. Inst. Mat. Univ. Nac. Autónoma México 29 (1989), 17–67. MR 1119888
Reference: [14] Illanes A.: The hyperspace $C_{2}(X)$ for a finite graph $X$ is unique.Glas. Mat. Ser. III 37(57) (2002), no. 2, 347–363. MR 1951538
Reference: [15] Illanes A.: Finite graphs $X$ have unique hyperspace $C_n(X)$.Proc. of the Spring Topology and Dynamical Systems Conf., Topology Proc. 27 (2003), no. 1, 179–188. MR 2048928
Reference: [16] Illanes A.: A model for hyperspace $C_{2}(S^1)$.Questions Answers Gen. Topology 22 (2004), no. 2, 117–130. MR 2092836
Reference: [17] Illanes A., Nadler S.B., Jr.: Hyperspaces. Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl 0933.54009, MR 1670250
Reference: [18] Keller O.-H.: Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum.Math. Ann. 105 (1931), no. 1, 748–758 (German). MR 1512740, 10.1007/BF01455844
Reference: [19] Kuratowski C.: Sur les continus de Jordan et le théorème de M. Brouwer.Fund. Math. 8 (1926), 137–150 (French). 10.4064/fm-8-1-137-150
Reference: [20] Kuratowski K.: Une carectérisation topologique de la surface de la sphère.Fund. Math. 13 (1929), 307–318 (French). 10.4064/fm-13-1-307-318
Reference: [21] Macías S.: On symmetric products.Topology Appl. 92 (1999), no. 2, 173–182. MR 1669815, 10.1016/S0166-8641(97)00233-2
Reference: [22] Macías S.: On the hyperspaces $C_n(X)$ of a continuum $X$.Topology Appl. 109 (2001), no. 2, 237–256. MR 1806337, 10.1016/S0166-8641(99)00151-0
Reference: [23] Mardešić S.: Equivalence of singular and Čech homology for ANR-s. Application to unicoherence.Fund. Math. 46 (1958), 29–45. MR 0099027, 10.4064/fm-46-1-29-45
Reference: [24] Nadler S. B. Jr.: Arc components of certain chainable continua.Canad. Math. Bull. 14 (1971), 183–189. MR 0310851, 10.4153/CMB-1971-033-8
Reference: [25] Nadler S. B. Jr.: Continua whose cone and hyperspace are homeomorphic.Trans. Amer. Math. Soc. 230 (1977), 321–345. MR 0464191, 10.1090/S0002-9947-1977-0464191-0
Reference: [26] Nadler S. B. Jr.: Hyperspaces of Sets.Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. Zbl 1125.54001, MR 0500811
Reference: [27] Nadler S. B. Jr.: A fixed point theorem for hyperspaces suspensions.Houston J. Math. 5 (1979), no. 1, 125–132. MR 0533646
Reference: [28] Nadler S. B. Jr.: Continuum Theory. An Introduction.Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl 0757.54009, MR 1192552
Reference: [29] Rudin M. E.: A normal space $X$ for which $X\times I$ is not normal.Fund. Math. 73 (1971/72), no. 2, 179–186. MR 0293583, 10.4064/fm-73-2-179-186
Reference: [30] Schori R. M.: Hyperspace and symmetric products of topological spaces.Fund. Math. 63 (1968), 77–88. MR 0232336, 10.4064/fm-63-1-77-88
Reference: [31] Whyburn G. T.: Analytic Topology.American Mathematical Society Colloquium Publications, 28, American Mathematical Society, New York, 1942. MR 0007095, 10.1090/coll/028
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-3_7.pdf 371.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo