Title:
|
Making holes in the cone, suspension and hyperspaces of some continua (English) |
Author:
|
Anaya, José G. |
Author:
|
Castañeda-Alvarado, Enrique |
Author:
|
Oca, Alejandro Fuentes-Montes de |
Author:
|
Orozco-Zitli, Fernando |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
343-364 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A connected topological space $Z$ is { unicoherent} provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ {makes a hole} in $Z$ if $Z-\{z\}$ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole. (English) |
Keyword:
|
continuum |
Keyword:
|
hyperspace |
Keyword:
|
hyperspace suspension |
Keyword:
|
property (b) |
Keyword:
|
unicoherence |
Keyword:
|
cone |
Keyword:
|
suspension |
MSC:
|
54B15 |
MSC:
|
54B20 |
MSC:
|
54F55 |
idZBL:
|
Zbl 06940875 |
idMR:
|
MR3861557 |
DOI:
|
10.14712/1213-7243.2015.233 |
. |
Date available:
|
2018-09-10T12:14:51Z |
Last updated:
|
2020-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147402 |
. |
Reference:
|
[1] Anaya J. G.: Making holes in hyperspaces.Topology Appl. 154 (2007), no. 10, 2000–2008. MR 2324910, 10.1016/j.topol.2006.09.017 |
Reference:
|
[2] Anaya J. G.: Making holes in the hyperspaces of a Peano continuum.Topology Proc. 37 (2011), 1–14. MR 2594371 |
Reference:
|
[3] Anaya J. G., Castañeda-Alvarado E., Martínez-Cortez J. A.: The fixed point property in symmetric products of some continua.Questions Answers Gen. Topology 34 (2016), no. 1, 29–36. MR 3467822 |
Reference:
|
[4] Anaya J. G., Castañeda-Alvarado E., Orozco-Zitli F.: Making holes in the hyperspace of subcontinua of some continua.Adv. in Pure Math. 2 (2012), 133–138. 10.4236/apm.2012.22020 |
Reference:
|
[5] Anaya J. G., Maya D., Orozco-Zitli F.: Making holes in the second symmetric products of dendrites and some fan.CIENCIA Ergo Sum 19 (2012), no. 1, 83–92. |
Reference:
|
[6] Borsuk K.: Quelques théorémes sur les ensembles unicoherents.Fund. Math. 17 (1931), 171–209 (French). 10.4064/fm-17-1-171-209 |
Reference:
|
[7] Borsuk K., Ulam S.: On symmetric product of topological spaces.Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882. MR 1562283, 10.1090/S0002-9904-1931-05290-3 |
Reference:
|
[8] Castañeda E.: Embedding symetric products in Euclidean spaces.Continuum theory, Denton, 1999, Lecture Notes in Pure and Appl. Math., 230, Marcel Dekker, New York, 2002, pp. 67–79. MR 2001435 |
Reference:
|
[9] Castañeda E., Illanes A.: Finite graphs have unique symmetric products.Topology Appl. 153 (2006), no. 9, 1434–1450. Zbl 1095.54006, MR 2211209, 10.1016/j.topol.2005.04.006 |
Reference:
|
[10] Eilenberg S.: Transformations continues en circonférence et la topologie du plan.Fund. Math. 26 (1936), 61–112 (French). 10.4064/fm-26-1-61-112 |
Reference:
|
[11] Escobedo R., López M. de J., Macías S.: On the hyperspace suspension of a continuum.Topology Appl. 138 (2004), no. 1–3, 109–124. MR 2035475, 10.1016/j.topol.2003.08.024 |
Reference:
|
[12] Ganea T.: Covering spaces and cartesian products.Ann. Soc. Polon. Math. 25 (1952), 30–42. MR 0056919 |
Reference:
|
[13] García-Máynez A., Illanes A.: A survey on unicoherence and related properties.An. Inst. Mat. Univ. Nac. Autónoma México 29 (1989), 17–67. MR 1119888 |
Reference:
|
[14] Illanes A.: The hyperspace $C_{2}(X)$ for a finite graph $X$ is unique.Glas. Mat. Ser. III 37(57) (2002), no. 2, 347–363. MR 1951538 |
Reference:
|
[15] Illanes A.: Finite graphs $X$ have unique hyperspace $C_n(X)$.Proc. of the Spring Topology and Dynamical Systems Conf., Topology Proc. 27 (2003), no. 1, 179–188. MR 2048928 |
Reference:
|
[16] Illanes A.: A model for hyperspace $C_{2}(S^1)$.Questions Answers Gen. Topology 22 (2004), no. 2, 117–130. MR 2092836 |
Reference:
|
[17] Illanes A., Nadler S.B., Jr.: Hyperspaces. Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl 0933.54009, MR 1670250 |
Reference:
|
[18] Keller O.-H.: Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum.Math. Ann. 105 (1931), no. 1, 748–758 (German). MR 1512740, 10.1007/BF01455844 |
Reference:
|
[19] Kuratowski C.: Sur les continus de Jordan et le théorème de M. Brouwer.Fund. Math. 8 (1926), 137–150 (French). 10.4064/fm-8-1-137-150 |
Reference:
|
[20] Kuratowski K.: Une carectérisation topologique de la surface de la sphère.Fund. Math. 13 (1929), 307–318 (French). 10.4064/fm-13-1-307-318 |
Reference:
|
[21] Macías S.: On symmetric products.Topology Appl. 92 (1999), no. 2, 173–182. MR 1669815, 10.1016/S0166-8641(97)00233-2 |
Reference:
|
[22] Macías S.: On the hyperspaces $C_n(X)$ of a continuum $X$.Topology Appl. 109 (2001), no. 2, 237–256. MR 1806337, 10.1016/S0166-8641(99)00151-0 |
Reference:
|
[23] Mardešić S.: Equivalence of singular and Čech homology for ANR-s. Application to unicoherence.Fund. Math. 46 (1958), 29–45. MR 0099027, 10.4064/fm-46-1-29-45 |
Reference:
|
[24] Nadler S. B. Jr.: Arc components of certain chainable continua.Canad. Math. Bull. 14 (1971), 183–189. MR 0310851, 10.4153/CMB-1971-033-8 |
Reference:
|
[25] Nadler S. B. Jr.: Continua whose cone and hyperspace are homeomorphic.Trans. Amer. Math. Soc. 230 (1977), 321–345. MR 0464191, 10.1090/S0002-9947-1977-0464191-0 |
Reference:
|
[26] Nadler S. B. Jr.: Hyperspaces of Sets.Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. Zbl 1125.54001, MR 0500811 |
Reference:
|
[27] Nadler S. B. Jr.: A fixed point theorem for hyperspaces suspensions.Houston J. Math. 5 (1979), no. 1, 125–132. MR 0533646 |
Reference:
|
[28] Nadler S. B. Jr.: Continuum Theory. An Introduction.Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl 0757.54009, MR 1192552 |
Reference:
|
[29] Rudin M. E.: A normal space $X$ for which $X\times I$ is not normal.Fund. Math. 73 (1971/72), no. 2, 179–186. MR 0293583, 10.4064/fm-73-2-179-186 |
Reference:
|
[30] Schori R. M.: Hyperspace and symmetric products of topological spaces.Fund. Math. 63 (1968), 77–88. MR 0232336, 10.4064/fm-63-1-77-88 |
Reference:
|
[31] Whyburn G. T.: Analytic Topology.American Mathematical Society Colloquium Publications, 28, American Mathematical Society, New York, 1942. MR 0007095, 10.1090/coll/028 |
. |