Previous |  Up |  Next

Article

Keywords:
continuum; hyperspace; hyperspace suspension; property (b); unicoherence; cone; suspension
Summary:
A connected topological space $Z$ is { unicoherent} provided that if $Z=A\cup B$ where $A$ and $B$ are closed connected subsets of $Z$, then $A\cap B$ is connected. Let $Z$ be a unicoherent space, we say that $z\in Z$ {makes a hole} in $Z$ if $Z-\{z\}$ is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.
References:
[1] Anaya J. G.: Making holes in hyperspaces. Topology Appl. 154 (2007), no. 10, 2000–2008. DOI 10.1016/j.topol.2006.09.017 | MR 2324910
[2] Anaya J. G.: Making holes in the hyperspaces of a Peano continuum. Topology Proc. 37 (2011), 1–14. MR 2594371
[3] Anaya J. G., Castañeda-Alvarado E., Martínez-Cortez J. A.: The fixed point property in symmetric products of some continua. Questions Answers Gen. Topology 34 (2016), no. 1, 29–36. MR 3467822
[4] Anaya J. G., Castañeda-Alvarado E., Orozco-Zitli F.: Making holes in the hyperspace of subcontinua of some continua. Adv. in Pure Math. 2 (2012), 133–138. DOI 10.4236/apm.2012.22020
[5] Anaya J. G., Maya D., Orozco-Zitli F.: Making holes in the second symmetric products of dendrites and some fan. CIENCIA Ergo Sum 19 (2012), no. 1, 83–92.
[6] Borsuk K.: Quelques théorémes sur les ensembles unicoherents. Fund. Math. 17 (1931), 171–209 (French). DOI 10.4064/fm-17-1-171-209
[7] Borsuk K., Ulam S.: On symmetric product of topological spaces. Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882. DOI 10.1090/S0002-9904-1931-05290-3 | MR 1562283
[8] Castañeda E.: Embedding symetric products in Euclidean spaces. Continuum theory, Denton, 1999, Lecture Notes in Pure and Appl. Math., 230, Marcel Dekker, New York, 2002, pp. 67–79. MR 2001435
[9] Castañeda E., Illanes A.: Finite graphs have unique symmetric products. Topology Appl. 153 (2006), no. 9, 1434–1450. DOI 10.1016/j.topol.2005.04.006 | MR 2211209 | Zbl 1095.54006
[10] Eilenberg S.: Transformations continues en circonférence et la topologie du plan. Fund. Math. 26 (1936), 61–112 (French). DOI 10.4064/fm-26-1-61-112
[11] Escobedo R., López M. de J., Macías S.: On the hyperspace suspension of a continuum. Topology Appl. 138 (2004), no. 1–3, 109–124. DOI 10.1016/j.topol.2003.08.024 | MR 2035475
[12] Ganea T.: Covering spaces and cartesian products. Ann. Soc. Polon. Math. 25 (1952), 30–42. MR 0056919
[13] García-Máynez A., Illanes A.: A survey on unicoherence and related properties. An. Inst. Mat. Univ. Nac. Autónoma México 29 (1989), 17–67. MR 1119888
[14] Illanes A.: The hyperspace $C_{2}(X)$ for a finite graph $X$ is unique. Glas. Mat. Ser. III 37(57) (2002), no. 2, 347–363. MR 1951538
[15] Illanes A.: Finite graphs $X$ have unique hyperspace $C_n(X)$. Proc. of the Spring Topology and Dynamical Systems Conf., Topology Proc. 27 (2003), no. 1, 179–188. MR 2048928
[16] Illanes A.: A model for hyperspace $C_{2}(S^1)$. Questions Answers Gen. Topology 22 (2004), no. 2, 117–130. MR 2092836
[17] Illanes A., Nadler S.B., Jr.: Hyperspaces. Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. MR 1670250 | Zbl 0933.54009
[18] Keller O.-H.: Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum. Math. Ann. 105 (1931), no. 1, 748–758 (German). DOI 10.1007/BF01455844 | MR 1512740
[19] Kuratowski C.: Sur les continus de Jordan et le théorème de M. Brouwer. Fund. Math. 8 (1926), 137–150 (French). DOI 10.4064/fm-8-1-137-150
[20] Kuratowski K.: Une carectérisation topologique de la surface de la sphère. Fund. Math. 13 (1929), 307–318 (French). DOI 10.4064/fm-13-1-307-318
[21] Macías S.: On symmetric products. Topology Appl. 92 (1999), no. 2, 173–182. DOI 10.1016/S0166-8641(97)00233-2 | MR 1669815
[22] Macías S.: On the hyperspaces $C_n(X)$ of a continuum $X$. Topology Appl. 109 (2001), no. 2, 237–256. DOI 10.1016/S0166-8641(99)00151-0 | MR 1806337
[23] Mardešić S.: Equivalence of singular and Čech homology for ANR-s. Application to unicoherence. Fund. Math. 46 (1958), 29–45. DOI 10.4064/fm-46-1-29-45 | MR 0099027
[24] Nadler S. B. Jr.: Arc components of certain chainable continua. Canad. Math. Bull. 14 (1971), 183–189. DOI 10.4153/CMB-1971-033-8 | MR 0310851
[25] Nadler S. B. Jr.: Continua whose cone and hyperspace are homeomorphic. Trans. Amer. Math. Soc. 230 (1977), 321–345. DOI 10.1090/S0002-9947-1977-0464191-0 | MR 0464191
[26] Nadler S. B. Jr.: Hyperspaces of Sets. Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York, 1978. MR 0500811 | Zbl 1125.54001
[27] Nadler S. B. Jr.: A fixed point theorem for hyperspaces suspensions. Houston J. Math. 5 (1979), no. 1, 125–132. MR 0533646
[28] Nadler S. B. Jr.: Continuum Theory. An Introduction. Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. MR 1192552 | Zbl 0757.54009
[29] Rudin M. E.: A normal space $X$ for which $X\times I$ is not normal. Fund. Math. 73 (1971/72), no. 2, 179–186. DOI 10.4064/fm-73-2-179-186 | MR 0293583
[30] Schori R. M.: Hyperspace and symmetric products of topological spaces. Fund. Math. 63 (1968), 77–88. DOI 10.4064/fm-63-1-77-88 | MR 0232336
[31] Whyburn G. T.: Analytic Topology. American Mathematical Society Colloquium Publications, 28, American Mathematical Society, New York, 1942. DOI 10.1090/coll/028 | MR 0007095
Partner of
EuDML logo