Previous |  Up |  Next

Article

Title: On the mappings ${\mathcal Z}_A$ and $\Im_A$ in intermediate rings of $C(X)$ (English)
Author: Parsinia, Mehdi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 3
Year: 2018
Pages: 383-390
Summary lang: English
.
Category: math
.
Summary: In this article, we investigate new topological descriptions for two well-known mappings ${\mathcal Z}_A$ and $\Im_A$ defined on intermediate rings $A(X)$ of $C(X)$. Using this, coincidence of each two classes of $z$-ideals, ${\mathcal Z}_A$-ideals and $\Im_A$-ideals of $A(X)$ is studied. Moreover, we answer five questions concerning the mapping $\Im_A$ raised in [J. Sack, S. Watson, {$C$ and $C^*$ among intermediate rings}, Topology Proc. {43} (2014), 69--82]. (English)
Keyword: $z$-ideal
Keyword: ${\mathcal Z}_A$-ideal
Keyword: $\Im_A$-ideal
Keyword: $z$-filter
Keyword: ${\mathcal Z}_A$-filter
Keyword: $\Im_A$-filter
Keyword: intermediate ring
MSC: 46E25
MSC: 54C30
idZBL: Zbl 06940878
idMR: MR3861560
DOI: 10.14712/1213-7243.2015.249
.
Date available: 2018-09-10T12:17:50Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147405
.
Reference: [1] Aliabad A. R., Parsinia M.: Remarks on subrings of $C(X)$ of the form $I+C^*(X)$.Quaest. Math. 40 (2017), no. 1, 63–73. MR 3620980
Reference: [2] Aliabad A. R., Parsinia M.: $z_R$-ideals and $z_R^{\circ}$-ideals in subrings of $ {\mathbb R}^X$.to appear in Iranian J. Math. Sci. Inform.
Reference: [3] Byun H. L., Watson S.: Prime and maximal ideals in subrings of $C(X)$.Topology Appl. 40 (1991), no. 1, 45–62. Zbl 0732.54016, MR 1114090, 10.1016/0166-8641(91)90057-S
Reference: [4] Domínguez J. M., Gómez Pérez J.: Intersections of maximal ideals in algebras between $C^*(X)$ and $C(X)$.Iberoamerican Conf. on Topology and Its Applications, Morelia, 1997, Topology Appl. 98 (1999), no. 1–3, 149–165. MR 1719998
Reference: [5] Gillman L., Jerison M.: Rings of Continuous Functions.The University Series in Higher Mathematics, D. Van Nostrand Co., Princeton, New York, 1960. Zbl 0327.46040, MR 0116199
Reference: [6] Mason G.: $z$-ideals and prime ideals.J. Algebra 26 (1973), 280–297. MR 0321915, 10.1016/0021-8693(73)90024-0
Reference: [7] Murray W., Sack J., Watson S.: $P$-spaces and intermediate rings of continuous functions.Rocky Mountain J. Math. 47 (2017), no. 8, 2757–2775. MR 3760317
Reference: [8] Panman P., Sack J., Watson S.: Correspondence between ideals and z-filters for rings of continuous functions between $C^*$ and $C$.Comment. Math. 52 (2012), no. 1, 11–20. MR 2977710
Reference: [9] Parsinia M.: Remarks on $LBI$-subalgebras of $C(X)$.Comment. Math. Univ. Carolin. 57 (2016), no. 2, 261–270. MR 3513449
Reference: [10] Parsinia M.: Remarks on intermediate $C$-rings of $C(X)$.Quaest. Math. (online 2017), 8 pages. MR 3836415
Reference: [11] Plank D.: On a class of subalgebras of $C(X)$ with applications to $\beta X\backslash X$.Fund. Math. 64 (1969), 41–54. MR 0244953, 10.4064/fm-64-1-41-54
Reference: [12] Redlin L., Watson S.: Maximal ideals in subalgebras of $C(X)$.Proc. Amer. Math. Soc. 100 (1987), no. 4, 763–766. Zbl 0622.54011, MR 0894451
Reference: [13] Sack J., Watson S.: $C$ and $C^*$ among intermediate rings.Topology Proc. 43 (2014), 69–82. MR 3080750
Reference: [14] Sack J., Watson S.: Characterizing $C(X)$ among intermediate $C$-rings on $X$.Topology Proc. 45 (2015), 301–313. MR 3291114
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-3_10.pdf 262.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo