Previous |  Up |  Next

Article

Title: Monotonically normal $e$-separable spaces may not be perfect (English)
Author: Porter, John E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 3
Year: 2018
Pages: 391-398
Summary lang: English
.
Category: math
.
Summary: A topological space $X$ is said to be $e$-separable if $X$ has a $\sigma$-closed-discrete dense subset. Recently, G. Gruenhage and D. Lutzer showed that $e$-separable PIGO spaces are perfect and asked if $e$-separable monotonically normal spaces are perfect in general. The main purpose of this article is to provide examples of $e$-separable monotonically normal spaces which are not perfect. Extremely normal $e$-separable spaces are shown to be stratifiable. (English)
Keyword: monotonically normal space
Keyword: $\sigma$-closed-discrete dense set
Keyword: $e$-separable space
Keyword: perfect space
Keyword: perfectly normal space
Keyword: point network
Keyword: perfect images of generalized ordered space
MSC: 54B10
MSC: 54D15
MSC: 54G20
idZBL: Zbl 06940879
idMR: MR3861561
DOI: 10.14712/1213-7243.2015.253
.
Date available: 2018-09-10T12:19:01Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147406
.
Reference: [1] Balogh Z.: Topological spaces with point networks.Proc. Amer. Math. Soc. 94 (1985), no. 3, 497–501. MR 0787901, 10.1090/S0002-9939-1985-0787901-1
Reference: [2] Borges C. R.: A study of monotonically normal spaces.Proc. Amer. Math. Soc. 38 (1973), 211–214. MR 0324644, 10.1090/S0002-9939-1973-0324644-4
Reference: [3] Cairns P., Junilla H., Nyikos P.: An application of Mary Ellen Rudin's solution to Nikiel's conjecture.Topology Appl. 195 (2015), 26–33. MR 3414872
Reference: [4] Collins P. J., Reed G. M., Roscoe A. W., Rudin M. E.: A lattice of conditions on topological spaces.Proc. Amer. Math. Soc. 94 (1985), 487–496. MR 0787900, 10.1090/S0002-9939-1985-0787900-X
Reference: [5] Collins P. J., Roscoe A. W.: Criteria for metrisability.Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. Zbl 0541.54034, MR 0733418, 10.1090/S0002-9939-1984-0733418-9
Reference: [6] Dias R. R., Soukup D. T.: On spaces with a $\sigma$-closed discrete dense sets.Topology Proc. 52 (2018), 245–264. MR 3773584
Reference: [7] Gruenhage G., Lutzer D.: Perfect images of generalized ordered spaces.Fund. Math. 240 (2018), no. 2, 175–197. MR 3720923, 10.4064/fm343-1-2017
Reference: [8] Gruenhage G., Zenor P.: Proto-metrizable spaces.Houston J. Math. 3 (1977), no. 1, 47–53. MR 0442895
Reference: [9] Heath R. W., Lutzer D. J., Zenor P. L.: Monotonically normal spaces.Trans. Amer. Math. Soc. 178 (1973), 481–493. MR 0372826, 10.1090/S0002-9947-1973-0372826-2
Reference: [10] Lutzer D. J.: On generalized ordered spaces.Dissertationes Math. Rozprawy Math. 89 (1971), 32 pages. MR 0324668
Reference: [11] Moody P. J., Reed G. M., Roscoe A. W., Collins P. J.: A lattice of conditions on topological spaces II.Fund. Math. 138 (1991), no. 2, 69–81. MR 1124537, 10.4064/fm-138-2-69-81
Reference: [12] Ostaszewski A. J.: Monotone normality and $G_\delta$-diagonals in the class of inductively generated spaces.Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), 905–930; Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR 0588837
Reference: [13] Williams S. W., Zhou H. X.: Strong versions of normality.General Topology and Applications, Lecture Notes on Pure and Appl. Math., Dekker 134 (1991), 379–389. Zbl 0797.54011, MR 1142815
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-3_11.pdf 252.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo