Title:
|
A nice subclass of functionally countable spaces (English) |
Author:
|
Tkachuk, Vladimir V. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
399-409 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A space $X$ is {functionally countable} if $f(X)$ is countable for any continuous function $f\colon X \to {\mathbb{R}}$. We will call a space $X$ {exponentially separable} if for any countable family ${\mathcal{F}}$ of closed subsets of $X$, there exists a countable set $A\subset X$ such that $A\cap \bigcap {\mathcal{G}}\neq\emptyset$ whenever ${\mathcal{G}}\subset {\mathcal{F}}$ and $\bigcap {\mathcal{G}}\neq\emptyset$. Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable spaces has nice categorical properties: it is preserved by closed subspaces, countable unions and continuous images. Besides, it contains all Lindelöf $P$-spaces as well as some wide classes of scattered spaces. In particular, if a scattered space is either Lindelöf or ${\omega}$-bounded, then it is exponentially separable. (English) |
Keyword:
|
countably compact space |
Keyword:
|
Lindelöf space |
Keyword:
|
Lindelöf $P$-space |
Keyword:
|
functionally countable space |
Keyword:
|
exponentially separable space |
Keyword:
|
retraction |
Keyword:
|
scattered space |
Keyword:
|
extent |
Keyword:
|
Sokolov space |
Keyword:
|
weakly Sokolov space |
Keyword:
|
function space |
MSC:
|
54C35 |
MSC:
|
54D65 |
MSC:
|
54G10 |
MSC:
|
54G12 |
idZBL:
|
Zbl 06940880 |
idMR:
|
MR3861562 |
DOI:
|
10.14712/1213-7243.2015.254 |
. |
Date available:
|
2018-09-10T12:20:07Z |
Last updated:
|
2020-10-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147407 |
. |
Reference:
|
[1] Engelking R.: General Topology.Mathematical Monographs, 60, Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780 |
Reference:
|
[2] Kannan V., Rajagopalan M.: Scattered spaces II.Illinois J. Math. 21 (1977), no. 4, 735–751. MR 0474180 |
Reference:
|
[3] Moore J. T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5 |
Reference:
|
[4] Mrówka S.: Some set-theoretic constructions in topology.Fund. Math. 94 (1977), no. 2, 83–92. MR 0433388, 10.4064/fm-94-2-83-92 |
Reference:
|
[5] Rojas-Hernández R., Tkachuk V. V.: A monotone version of the Sokolov property and monotone retractability in function spaces.J. Math. Anal. Appl. 412 (2014), no. 1, 125–137. MR 3145787, 10.1016/j.jmaa.2013.10.043 |
Reference:
|
[6] Sokolov G. A.: Lindelöf spaces of continuous functions.Matem. Zametki 39 (1986), no. 6, 887–894, 943 (Russian). MR 0855936 |
Reference:
|
[7] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), no. 3, 193–223. MR 0380708, 10.4064/fm-88-3-193-223 |
Reference:
|
[8] Tkachuk V. V.: A nice class extracted from $C_p$-theory.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 503–513. MR 2174528 |
Reference:
|
[9] Tkachuk V. V.: A $C_p$-theory Problem Book. Topological and Function Spaces.Problem Books in Mathematics, Springer, New York, 2011. Zbl 1222.54002, MR 3024898 |
Reference:
|
[10] Tkachuk V. V.: A $C_p$-theory Problem Book. Special Features of Function Spaces.Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753 |
Reference:
|
[11] Tkachuk V. V.: A $C_p$-theory Problem Book. Compactness in Function Spaces.Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185 |
Reference:
|
[12] Tkachuk V. V.: Lindelöf $P$-spaces need not be Sokolov.Math. Slovaca 67 (2017), no. 1, 227–234. MR 3630168, 10.1515/ms-2016-0262 |
Reference:
|
[13] Uspenskij V. V.: On the spectrum of frequencies of function spaces.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 37 (1982), no. 1, 31–35 (Russian. English summary). MR 0650600 |
. |