Previous |  Up |  Next

Article

Title: A nice subclass of functionally countable spaces (English)
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 3
Year: 2018
Pages: 399-409
Summary lang: English
.
Category: math
.
Summary: A space $X$ is {functionally countable} if $f(X)$ is countable for any continuous function $f\colon X \to {\mathbb{R}}$. We will call a space $X$ {exponentially separable} if for any countable family ${\mathcal{F}}$ of closed subsets of $X$, there exists a countable set $A\subset X$ such that $A\cap \bigcap {\mathcal{G}}\neq\emptyset$ whenever ${\mathcal{G}}\subset {\mathcal{F}}$ and $\bigcap {\mathcal{G}}\neq\emptyset$. Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable spaces has nice categorical properties: it is preserved by closed subspaces, countable unions and continuous images. Besides, it contains all Lindelöf $P$-spaces as well as some wide classes of scattered spaces. In particular, if a scattered space is either Lindelöf or ${\omega}$-bounded, then it is exponentially separable. (English)
Keyword: countably compact space
Keyword: Lindelöf space
Keyword: Lindelöf $P$-space
Keyword: functionally countable space
Keyword: exponentially separable space
Keyword: retraction
Keyword: scattered space
Keyword: extent
Keyword: Sokolov space
Keyword: weakly Sokolov space
Keyword: function space
MSC: 54C35
MSC: 54D65
MSC: 54G10
MSC: 54G12
idZBL: Zbl 06940880
idMR: MR3861562
DOI: 10.14712/1213-7243.2015.254
.
Date available: 2018-09-10T12:20:07Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147407
.
Reference: [1] Engelking R.: General Topology.Mathematical Monographs, 60, Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [2] Kannan V., Rajagopalan M.: Scattered spaces II.Illinois J. Math. 21 (1977), no. 4, 735–751. MR 0474180
Reference: [3] Moore J. T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5
Reference: [4] Mrówka S.: Some set-theoretic constructions in topology.Fund. Math. 94 (1977), no. 2, 83–92. MR 0433388, 10.4064/fm-94-2-83-92
Reference: [5] Rojas-Hernández R., Tkachuk V. V.: A monotone version of the Sokolov property and monotone retractability in function spaces.J. Math. Anal. Appl. 412 (2014), no. 1, 125–137. MR 3145787, 10.1016/j.jmaa.2013.10.043
Reference: [6] Sokolov G. A.: Lindelöf spaces of continuous functions.Matem. Zametki 39 (1986), no. 6, 887–894, 943 (Russian). MR 0855936
Reference: [7] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), no. 3, 193–223. MR 0380708, 10.4064/fm-88-3-193-223
Reference: [8] Tkachuk V. V.: A nice class extracted from $C_p$-theory.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 503–513. MR 2174528
Reference: [9] Tkachuk V. V.: A $C_p$-theory Problem Book. Topological and Function Spaces.Problem Books in Mathematics, Springer, New York, 2011. Zbl 1222.54002, MR 3024898
Reference: [10] Tkachuk V. V.: A $C_p$-theory Problem Book. Special Features of Function Spaces.Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753
Reference: [11] Tkachuk V. V.: A $C_p$-theory Problem Book. Compactness in Function Spaces.Problem Books in Mathematics, Springer, Cham, 2015. MR 3364185
Reference: [12] Tkachuk V. V.: Lindelöf $P$-spaces need not be Sokolov.Math. Slovaca 67 (2017), no. 1, 227–234. MR 3630168, 10.1515/ms-2016-0262
Reference: [13] Uspenskij V. V.: On the spectrum of frequencies of function spaces.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 37 (1982), no. 1, 31–35 (Russian. English summary). MR 0650600
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-3_12.pdf 276.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo