Previous |  Up |  Next

Article

Title: On ideals in De Morgan residuated lattices (English)
Author: Holdon, Liviu-Constantin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 443-475
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce a new class of residuated lattices called De Morgan residuated lattices, we show that the variety of De Morgan residuated lattices includes important subvarieties of residuated lattices such as Boolean algebras, MV-algebras, BL-algebras, Stonean residuated lattices, MTL-algebras and involution residuated lattices. We investigate specific properties of ideals in De Morgan residuated lattices, we state the prime ideal theorem and the pseudo-complementedness of the ideal lattice, we pay attention to prime, maximal, $\odot$-prime ideals and to ideals that are meet-irreducible or meet-prime in the lattice of all ideals. We introduce the concept of an annihilator of a given subset of a De Morgan residuated lattice and we prove that annihilators are a particular kind of ideals. Also, regular annihilator and relative annihilator ideals are considered. (English)
Keyword: residuated lattice
Keyword: De Morgan laws
Keyword: filter
Keyword: deductive system
Keyword: ideal
Keyword: $\cap $-prime
Keyword: $\cap $-irreducible
Keyword: annihilator
MSC: 03B22
MSC: 03G05
MSC: 03G25
MSC: 06A06
MSC: 08A72
idZBL: Zbl 06987017
idMR: MR3844827
DOI: 10.14736/kyb-2018-3-0443
.
Date available: 2018-11-02T10:06:55Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147431
.
Reference: [1] Balbes, R., Dwinger, Ph.: Distributive Lattices..University of Missouri Press 1974. MR 0373985
Reference: [2] Blyth, T. S.: Lattices and Ordered Algebraic Structures..Springer, London 2005. MR 2126425, 10.1007/b139095
Reference: [3] Buşneag, C., Piciu, D.: The stable topologies for residuated lattices..Soft Computing 16 (2012), 1639-1655. 10.1007/s00500-012-0849-x
Reference: [4] Buşneag, D., Piciu, D., Paralescu, J.: Divisible and semi-divisible residuated lattices..Ann. Alexandru Ioan Cuza University-Mathematics (2013), 14-45. MR 3678670
Reference: [5] Buşneag, D., Piciu, D., Holdon, L. C.: Some Properties of Ideals in Stonean residuated lattice..J. Multiple-Valued Logic Soft Computing 24 (2015), 5-6, 529-546. MR 3305879
Reference: [6] Cignoli, R.: Free algebras in varieties of Stonean residuated lattices..Soft Computing 12 (2008), 315-320. 10.1007/s00500-007-0183-x
Reference: [7] Esteva, F., Godo, L.: Monoidal $t-$norm based logic: towards a logic for left-continnuos $t-$norms..Fuzzy Sets and Systems 124 (2001), 3, 271-288. MR 1860848, 10.1016/s0165-0114(01)00098-7
Reference: [8] Lele, C., Nganou, J. B.: MV-algebras derived from ideals in BL-algebra..Fuzzy Sets and Systems 218 (2013), 103-113. MR 3036611, 10.1016/j.fss.2012.09.014
Reference: [9] Maroof, F. G., Saeid, A. B., Eslami, E.: On co-annihilators in residuated lattices..J. Intelligent Fuzzy Systems 31 (2016), 1263-1270. 10.3233/ifs-162192
Reference: [10] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: an Algebraic Glimpse at Substructural Logics..Studies in Logics and the Foundations of Mathematics, Elsevier 2007. MR 2531579
Reference: [11] Holdon, L. C., Niţu, L. M., Chiriac, G.: Distributive residuated lattices..Ann. University of Craiova-Mathematics and Computer Science Series 39 (2012), 100-109. MR 2979958
Reference: [12] Mureşan, C.: Co-stone Residuated Lattices..Ann. University of Craiova-Mathematics and Computer Science Series 40 (2013), 52-75. MR 3078959, 10.1109/ismvl.2010.27
Reference: [13] Iorgulescu, A.: Algebras of Logic as BCK-algebras..Academy of Economic Studies Bucharest, Romania 2008. MR 2542102
Reference: [14] Leuştean, L.: Baer extensions of BL-algebras..J. Multiple-Valued Logic Soft Computing 12 (2006), 321-335. MR 2288820
Reference: [15] Piciu, D.: Algebras of Fuzzy Logic..Editura Universitaria, Craiova 2007.
Reference: [16] Rachunek, J., Salounova, D.: Ideals and involutive filters in residuated lattices..In: SSAOS 2014, Stara Lesna.
Reference: [17] Turunen, E.: Mathematics Behind Fuzzy logic..Physica-Verlag Heidelberg, New York 1999. MR 1716958
Reference: [18] Zou, Y. X., Xin, X. L., He, P. F.: On annihilators in BL-algebras..Open Math. 14 (2016), 324-337. MR 3505725, 10.1515/math-2016-0029
.

Files

Files Size Format View
Kybernetika_54-2018-3_3.pdf 519.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo