Previous |  Up |  Next

Article

Title: On a special class of left-continuous uninorms (English)
Author: Li, Gang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 427-442
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region $A(e)$ and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions $I: [0,1]^{2}\rightarrow[0,1]$ for which a uninorm $U$ of this special class exists in such a way that $I$ is the residual implications derived from $U$. (English)
Keyword: uninorm
Keyword: internal operator
Keyword: ordinal sum
Keyword: residual implication
Keyword: triangular subnorm
MSC: 03B52
MSC: 03E72
MSC: 06F05
idZBL: Zbl 06987016
idMR: MR3844826
DOI: 10.14736/kyb-2018-3-0427
.
Date available: 2018-11-02T10:05:28Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147430
.
Reference: [1] Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms..Inform. Sci. 180 (2010), 3992-4005. MR 2671753, 10.1016/j.ins.2010.06.023
Reference: [2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas..World Scientific, New Jersey 2006. MR 2222258, 10.1142/9789812774200
Reference: [3] Baczyński, M., Jayaram, B.: Fuzzy Implications..Springer, Berlin, Herdelberg 2008. Zbl 1293.03012
Reference: [4] Baets, B. De: An order-theoretic approach to solving sup-T equations..In: Fuzzy Set Theory and Advanced Mathemtical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67-87. 10.1007/978-1-4615-2357-4_3
Reference: [5] Baets, B. De, Fodor, J.: Residual operators of uninorms..Soft Comput. 3 (1999), 89-100. MR 2391544, 10.1007/s005000050057
Reference: [6] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof..Fuzzy Sets Systems 104 (1999), 133-136. Zbl 0928.03060, MR 1685816, 10.1016/s0165-0114(98)00265-6
Reference: [7] Baets, B. De: Idempotent uninorms..Eur. J. Oper. Res. 118 (1998), 631-642. Zbl 1178.03070, 10.1016/s0377-2217(98)00325-7
Reference: [8] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms..In: Seventh IFSA World Congress, Prague, 220 (1997), 215-220.
Reference: [9] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14. Zbl 1178.03070, MR 2514519, 10.1142/s021848850900570x
Reference: [10] Clifford, A. H.: Naturally totally ordered commutative semigroups..Amer. J. Math. 76 (1954), 631-646. MR 0062118, 10.2307/2372706
Reference: [11] Csiszár, O., Fodor, J.: On uninorms with fixed values along their border..Ann. Univ. Sci. Bundapest., Sect. Com. 42 (2014), 93-108. MR 3275665
Reference: [12] Czogała, E., Drewniak, J.: Associative monotonic operations in fuzzy set theory..Fuzzy Sets Systems 12 (1984), 249-269. MR 0740097, 10.1016/0165-0114(84)90072-1
Reference: [13] Drygaś, P.: Discussion of the structure of uninorms..Kybernetika 41 (2005), 213-226. Zbl 1249.03093, MR 2138769, 10.1016/j.fss.2015.05.018
Reference: [14] Drygaś, P.: On the structure of continuous uninorms..Kybernetika 43 (2007), 183-196. Zbl 1132.03349, MR 2343394
Reference: [15] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums..Fuzzy Sets Systems 161 (2010), 149-157. Zbl 1191.03039, MR 2566236, 10.1016/j.fss.2009.09.017
Reference: [16] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of a class of uninorms with continuous underlying operators..Fuzzy Sets Systems 287 (2016), 137-153. MR 3447023, 10.1016/j.fss.2015.07.015
Reference: [17] Esteva, F., Godo, L.: Monoidal t-norm based logic: owards a logic for left-continuous t-norms..Fuzzy Sets Systems 124 (2001), 271-288. MR 1860848, 10.1016/s0165-0114(01)00098-7
Reference: [18] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl 1232.03015, MR 1471619, 10.1142/s0218488597000312
Reference: [19] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms..Fuzzy Sets Systems 202 (2012), 89-99. Zbl 1268.03027, MR 2934788, 10.1016/j.fss.2011.12.001
Reference: [20] Hu, S., Li, Z.: The structure of continuous uninorms..Fuzzy Sets Systems 124 (2001), 43-52. MR 1859776, 10.1016/s0165-0114(00)00044-0
Reference: [21] Jenei, S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms..Fuzzy Sets Systems 126 (2002), 199-205. MR 1884686, 10.1016/s0165-0114(01)00040-9
Reference: [22] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [23] Klement, E. P., Mesiar, R., Pap, E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8 (2000), 707-717. MR 1803475, 10.1142/s0218488500000514
Reference: [24] Li, G., Liu, H-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604. MR 3252143, 10.1142/s0218488514500299
Reference: [25] Li, G., Liu, H-W., Fodor, J.: On almost equitable uninorms..Kybernetika 51(4) (2015), 699-711. MR 3423195, 10.14736/kyb-2015-4-0699
Reference: [26] Li, G., Liu, H-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm..Fuzzy Sets Systems 287 (2016), 154-171. MR 3447024, 10.1016/j.fss.2015.01.019
Reference: [27] Li, G., Liu, H-W.: On Relations Between Several Classes of Uninorms..In: Fan TH., Chen SL., Wang SM., Li YM. (eds) Quantitative Logic and Soft Computing 2016. Advances in Intelligent Systems and Computing, vol. 510. Springer, 2017, pp. 251-259. 10.1007/978-3-319-46206-6_25
Reference: [28] Li, G., Liu, H-W.: On properties of uninorms locally internal on the boundary..Fuzzy Sets Systems 332 (2017), 116-128. MR 3732254, 10.1016/j.fss.2017.07.014
Reference: [29] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations..Fuzzy Sets Systems 137(1) (2003), 27-42. Zbl 1022.03038, MR 1992696, 10.1016/s0165-0114(02)00430-x
Reference: [30] Massanet, S., Torrens, J.: The law of implication versus the exchange principle on fuzzy implications..Fuzzy Sets Systems 168 (2011), 47-69. MR 2772620, 10.1016/j.fss.2010.12.012
Reference: [31] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms..J. Intell. Fuzzy Systems 29(3) (2015), 1021-1037. MR 3414365, 10.3233/ifs-151728
Reference: [32] Mesiarová, A.: Multi-polar t-conorms and uninorms..Inform. Sci. 301 (2015), 227-240. MR 3311790, 10.1016/j.ins.2014.12.060
Reference: [33] Mesiarová, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by their set of discontinuity points..IEEE Trans. Fuzzy Systems PP (2017), in press. MR 3614252
Reference: [34] Mesiarová, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction..Int. J. Approx. Reason. 87 (2017), 176-192. MR 3614252, 10.1016/j.ijar.2017.01.007
Reference: [35] Noguera, C., Esteva, F., Godo, L.: Generalized continuous and left-continuous t-norms arising from algebraic semantics for fuzzy logics..Inform. Sci. 180 (2010), 1354-1372. MR 2587910, 10.1016/j.ins.2009.12.011
Reference: [36] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms..Fuzzy Sets Systems 240 (2014), 22-38. Zbl 1315.03099, MR 3167510, 10.1016/j.fss.2013.09.013
Reference: [37] Pouzet, M., Rosenberg, I. G., Stone, M. G.: A projection property..Algebra Univers. 36(2) (1996), 159-184. MR 1402510, 10.1007/bf01234102
Reference: [38] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms..Fuzzy Sets Systems 155 (2005), 446-458. Zbl 1077.03514, MR 2181001, 10.1016/j.fss.2005.04.010
Reference: [39] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms..Kybernetika 40 (2004), 21-38. Zbl 1249.94095, MR 2068596
Reference: [40] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm..IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190. 10.1109/tfuzz.2005.864087
Reference: [41] Ruiz-Aguilera, D., Torrens, J.: R-implications and S-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms..Fuzzy Sets Systems 160 (2009), 832-852. MR 2493278, 10.1016/j.fss.2008.05.015
Reference: [42] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J.: Some remarks on the characterization of idempotent uninorms..In: IPMU 2010, LNAI 6178, Eds. E.Hüllermeier, R.Kruse and F.Hoffmann, Springer-Verlag Berlin Heidelberg 2010, pp. 425-434. 10.1007/978-3-642-14049-5_44
Reference: [43] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators..Fuzzy Sets Syst. 268 (2015), 44-58. MR 3320246, 10.1016/j.fss.2014.10.020
Reference: [44] Takács, M.: Uninorm-based models for FLC systems..J. Intell. Fuzzy Systems 19 (2008), 65-73.
Reference: [45] Yager, R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Systems 80 (1996), 111-120. Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
Reference: [46] Yager, R., Rybalov, A.: Bipolar aggregation using the uninorms..Fuzzy Optim. Decis. Making 10 (2011), 59-70. MR 2799503, 10.1007/s10700-010-9096-8
Reference: [47] Yager, R.: Uninorms in fuzzy systems modeling..Fuzzy Sets Systems 122 (2001), 167-175. Zbl 0978.93007, MR 1839955, 10.1016/s0165-0114(00)00027-0
.

Files

Files Size Format View
Kybernetika_54-2018-3_2.pdf 425.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo