[3] Dong, J.-L., Gao, J., Ju, F., Shen, J.: 
Modulus methods for nonnegatively constrained image restoration. SIAM J. Imaging Sci. 9 (2016), 1226-1246. 
DOI 10.1137/15m1045892 | 
MR 3541995 
[6] Hu, M.-C., Lu, S.-Y., Chen, Y.-H.: 
Stochastic-multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty. Appl. Energy 182 (2016), 500-506. 
DOI 10.1016/j.apenergy.2016.08.112 
[7] Huyen, D. T. K., Yen, N. D.: 
Coderivatives and the solution map of a linear constraint system. SIAM J. Optim. 26 (2016), 986-1007. 
DOI 10.1137/140998469 | 
MR 3485978 
[8] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, New Jersey, 2002.
[10] Liu, C., Li, C.: 
Synchronous and asynchronous multisplitting iteration schemes for solving mixed linear complementarity problems with {H}-matrices. J. Optim. Theory Appl. 171 (2016), 169-185. 
DOI 10.1007/s10957-016-0944-8 | 
MR 3547848 
[12] Liu, Q., Yang, S., Wang, J.: 
A collective neurodynamic approach to distributed constrained optimization. IEEE Trans. Neural Networks Learning Systems 28 (2017), 1747-1758. 
DOI 10.1109/tnnls.2016.2549566 | 
MR 3684229 
[15] Najafi, H. S., Edalatpanah, S.: 
On the convergence regions of generalized accelerated overrelaxation method for linear complementarity problems. J. Optim. Theory Appl. 156 (2013), 859-866. 
DOI 10.1007/s10957-012-0135-1 | 
MR 3022313 
[16] Peng, H., Li, F., Zhang, S., Chen, B.: 
A novel fast model predictive control with actuator saturation for large-scale structures. Computers Structures 187 (2017), 35-49. 
DOI 10.1016/j.compstruc.2017.03.014 
[17] Posa, M., Cantu, C., Tedrake, R.: 
A direct method for trajectory optimization of rigid bodies through contact. Int. J. Robotics Res. 33 (2014), 69-81. 
DOI 10.1177/0278364913506757 
[18] Reddy, P. V., Zaccour, G.: 
Feedback Nash equilibria in linear-quadratic difference games with constraints. IEEE Trans. Automat. Control 62 (2017), 590-604. 
DOI 10.1109/tac.2016.2555879 | 
MR 3607165 
[19] Cottle, R. W., Pang, Jong-Shi, Stone, R. E.: 
The Linear Complementarity Problem. SIAM, Commonwealth of Pennsylvania, 2009. 
DOI 10.1137/1.9780898719000 
[21] Sessa, V., Iannelli, L., Vasca, F.: 
A complementarity model for closed-loop power converters. IEEE Trans. Power Electron. 29 (2014), 6821-6835. 
DOI 10.1109/tpel.2014.2306975 
[24] Tonge, R., Benevolenski, F., Voroshilov, A.: 
Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graphics 31 (2012), 4, 1-8. 
DOI 10.1145/2185520.2185601 
[25] Wang, Y., Lin, P., Hong, Y.: 
Distributed regression estimation with incomplete data in multi-agent networks. Science China Inform. Sci. 61 (2018), 092202. 
DOI 10.1007/s11432-016-9173-8 | 
MR 3742944 
[26] Xie, Y., Shanbhag, U. V.: 
On robust solutions to uncertain linear complementarity problems and their variants. SIAM J. Optim. 26 (2016), 2120-2159. 
DOI 10.1137/15m1010427 | 
MR 3561777 
[27] Xu, P., Cannon, E., Lachapelle, G.: 
Stabilizing ill-conditioned linear complementarity problems. J. Geodesy 73 (1999), 204-213. 
DOI 10.1007/s001900050237 
[28] Yao, J., Adler, I., Oren, S. S.: 
Modeling and computing two-settlement oligopolistic equilibrium in a congested electricity network. Oper. Res. 56 (2008), 34-47. 
DOI 10.1287/opre.1070.0416 | 
MR 2402216 
[29] Yi, P., Hong, Y., Liu, F.: 
Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74 (2016), 259-269. 
DOI 10.1016/j.automatica.2016.08.007 | 
MR 3569392 
[30] Zeng, X., Cao, K.: 
Computation of linear algebraic equations with solvability verification over multi-agent networks. Kybernetika 53 (2017), 803-819. 
DOI 10.14736/kyb-2017-5-0803 | 
MR 3750104 
[31] Zeng, X., Liang, S., Hong, Y., Chen, J.: 
Distributed computation of linear matrix equations: an optimization perspective. IEEE Trans. Automat. Control, in press, arXiv preprint arXiv:1708.01833. 
DOI 10.1109/tac.2017.2752001 
[32] Zeng, X., Yi, P., Hong, Y.: 
Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2017), 5227-5233. 
DOI 10.1109/tac.2016.2628807 | 
MR 3708893