Previous |  Up |  Next

Article

Title: Multi-agent network flows that solve linear complementarity problems (English)
Author: Liang, Shu
Author: Zeng, Xianlin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 542-556
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider linear complementarity problems with positive definite matrices through a multi-agent network. We propose a distributed continuous-time algorithm and show its correctness and convergence. Moreover, with the help of Kalman-Yakubovich-Popov lemma and Lyapunov function, we prove its asymptotic convergence. We also present an alternative distributed algorithm in terms of an ordinary differential equation. Finally, we illustrate the effectiveness of our method by simulations. (English)
Keyword: distributed algorithm
Keyword: linear complementarity problem
Keyword: multi-agent network
Keyword: nonsmooth algorithm
Keyword: continuous-time algorithm
MSC: 68W15
MSC: 90C33
idZBL: Zbl 06987021
idMR: MR3844831
DOI: 10.14736/kyb-2018-3-0542
.
Date available: 2018-11-02T10:15:18Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147435
.
Reference: [1] Aubin, J. P., Cellina, A.: Differential Inclusions..Springer-Verlag, Berlin 1984. MR 0755330, 10.1007/978-3-642-69512-4
Reference: [2] Cherukuri, A., Cortés, J.: Initialization-free distributed coordination for economic dispatch under varying loads and generator commitment..Automatica 74 (2016), 183-193. MR 3569384, 10.1016/j.automatica.2016.07.003
Reference: [3] Dong, J.-L., Gao, J., Ju, F., Shen, J.: Modulus methods for nonnegatively constrained image restoration..SIAM J. Imaging Sci. 9 (2016), 1226-1246. MR 3541995, 10.1137/15m1045892
Reference: [4] Elfoutayeni, Y., Khaladi, M.: Using vector divisions in solving the linear complementarity problem..J. Comput. Appl. Math. 236 (2012), 1919-1925. MR 2863525, 10.1016/j.cam.2011.11.001
Reference: [5] Herceg, M., Jones, C. N., Kvasnica, M., Morari, M.: Enumeration-based approach to solving parametric linear complementarity problems..Automatica 62 (2015), 243-248. MR 3423995, 10.1016/j.automatica.2015.09.019
Reference: [6] Hu, M.-C., Lu, S.-Y., Chen, Y.-H.: Stochastic-multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty..Appl. Energy 182 (2016), 500-506. 10.1016/j.apenergy.2016.08.112
Reference: [7] Huyen, D. T. K., Yen, N. D.: Coderivatives and the solution map of a linear constraint system..SIAM J. Optim. 26 (2016), 986-1007. MR 3485978, 10.1137/140998469
Reference: [8] Khalil, H. K.: Nonlinear Systems. Third edition..Prentice Hall, New Jersey, 2002.
Reference: [9] Liang, S., Yi, P., Hong, Y.: Distributed {N}ash equilibrium seeking for aggregative games with coupled constraints..Automatica 85 (2017), 179-185. MR 3712859, 10.1016/j.automatica.2017.07.064
Reference: [10] Liu, C., Li, C.: Synchronous and asynchronous multisplitting iteration schemes for solving mixed linear complementarity problems with {H}-matrices..J. Optim. Theory Appl. 171 (2016), 169-185. MR 3547848, 10.1007/s10957-016-0944-8
Reference: [11] Liu, J., Morse, A. S., Nedić, A., Basar, T.: Exponential convergence of a distributed algorithm for solving linear algebraic equations..Automatica 83 (2017), 37-46. MR 3680412, 10.1016/j.automatica.2017.05.004
Reference: [12] Liu, Q., Yang, S., Wang, J.: A collective neurodynamic approach to distributed constrained optimization..IEEE Trans. Neural Networks Learning Systems 28 (2017), 1747-1758. MR 3684229, 10.1109/tnnls.2016.2549566
Reference: [13] Lou, Y., Hong, Y., Wang, S.: Distributed continuous-time approximate projection protocols for shortest distance optimization problems..Automatica 69 (2016), 289-297. Zbl 1338.93026, MR 3500113, 10.1016/j.automatica.2016.02.019
Reference: [14] Mei, S., Wei, W., Liu, F.: On engineering game theory with its application in power systems..Control Theory Technol. 15 (2017), 1-12. MR 3598943, 10.1007/s11768-017-6186-y
Reference: [15] Najafi, H. S., Edalatpanah, S.: On the convergence regions of generalized accelerated overrelaxation method for linear complementarity problems..J. Optim. Theory Appl. 156 (2013), 859-866. MR 3022313, 10.1007/s10957-012-0135-1
Reference: [16] Peng, H., Li, F., Zhang, S., Chen, B.: A novel fast model predictive control with actuator saturation for large-scale structures..Computers Structures 187 (2017), 35-49. 10.1016/j.compstruc.2017.03.014
Reference: [17] Posa, M., Cantu, C., Tedrake, R.: A direct method for trajectory optimization of rigid bodies through contact..Int. J. Robotics Res. 33 (2014), 69-81. 10.1177/0278364913506757
Reference: [18] Reddy, P. V., Zaccour, G.: Feedback Nash equilibria in linear-quadratic difference games with constraints..IEEE Trans. Automat. Control 62 (2017), 590-604. MR 3607165, 10.1109/tac.2016.2555879
Reference: [19] Cottle, R. W., Pang, Jong-Shi, Stone, R. E.: The Linear Complementarity Problem..SIAM, Commonwealth of Pennsylvania, 2009. 10.1137/1.9780898719000
Reference: [20] Rockafellar, R. T., Wets, R. J. B.: Variational Analysis..Springer-Verlag, New York, 1998. Zbl 0888.49001, 10.1007/978-3-642-02431-3
Reference: [21] Sessa, V., Iannelli, L., Vasca, F.: A complementarity model for closed-loop power converters..IEEE Trans. Power Electron. 29 (2014), 6821-6835. 10.1109/tpel.2014.2306975
Reference: [22] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations..IEEE Trans. Automat. Control 62 (2017), 2659-2674. MR 3660554, 10.1109/tac.2016.2612819
Reference: [23] Simantiraki, E. M., Shanno, D. F.: An infeasible-interior-point method for linear complementarity problems..SIAM J. Optim. 7 (1997), 620-640. MR 1462058, 10.1137/s1052623495282882
Reference: [24] Tonge, R., Benevolenski, F., Voroshilov, A.: Mass splitting for jitter-free parallel rigid body simulation..ACM Trans. Graphics 31 (2012), 4, 1-8. 10.1145/2185520.2185601
Reference: [25] Wang, Y., Lin, P., Hong, Y.: Distributed regression estimation with incomplete data in multi-agent networks..Science China Inform. Sci. 61 (2018), 092202. MR 3742944, 10.1007/s11432-016-9173-8
Reference: [26] Xie, Y., Shanbhag, U. V.: On robust solutions to uncertain linear complementarity problems and their variants..SIAM J. Optim. 26 (2016), 2120-2159. MR 3561777, 10.1137/15m1010427
Reference: [27] Xu, P., Cannon, E., Lachapelle, G.: Stabilizing ill-conditioned linear complementarity problems..J. Geodesy 73 (1999), 204-213. 10.1007/s001900050237
Reference: [28] Yao, J., Adler, I., Oren, S. S.: Modeling and computing two-settlement oligopolistic equilibrium in a congested electricity network..Oper. Res. 56 (2008), 34-47. MR 2402216, 10.1287/opre.1070.0416
Reference: [29] Yi, P., Hong, Y., Liu, F.: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems..Automatica 74 (2016), 259-269. MR 3569392, 10.1016/j.automatica.2016.08.007
Reference: [30] Zeng, X., Cao, K.: Computation of linear algebraic equations with solvability verification over multi-agent networks..Kybernetika 53 (2017), 803-819. MR 3750104, 10.14736/kyb-2017-5-0803
Reference: [31] Zeng, X., Liang, S., Hong, Y., Chen, J.: Distributed computation of linear matrix equations: an optimization perspective..IEEE Trans. Automat. Control, in press, arXiv preprint arXiv:1708.01833. 10.1109/tac.2017.2752001
Reference: [32] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach..IEEE Trans. Automat. Control 62 (2017), 5227-5233. MR 3708893, 10.1109/tac.2016.2628807
.

Files

Files Size Format View
Kybernetika_54-2018-3_7.pdf 511.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo