Title:
|
Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations (English) |
Author:
|
Lin, Meili |
Author:
|
Sun, Zhendong |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
576-592 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu_1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method. (English) |
Keyword:
|
switched linear systems |
Keyword:
|
matrix set measure |
Keyword:
|
spectral abscissa |
Keyword:
|
coordinate transformations |
MSC:
|
93D20 |
idZBL:
|
Zbl 06987023 |
idMR:
|
MR3844833 |
DOI:
|
10.14736/kyb-2018-3-0576 |
. |
Date available:
|
2018-11-02T10:21:25Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147437 |
. |
Reference:
|
[1] Barabanov, N.: Ways to compute the Lyapunov index for differential nesting..Automat. Remote Control 50 (1989), 4, 475-479. MR 0998835, 10.1109/tac.1969.1099279 |
Reference:
|
[2] Blanchini, F.: The gain scheduling and the robust state feedback stabilization problems..IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070. MR 1798443, 10.1109/9.887627 |
Reference:
|
[3] Dayawansa, W., Martin, C.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching..IEEE Trans. Automat. Control 44 (1999), 4, 751-760. MR 1684429, 10.1109/9.754812 |
Reference:
|
[4] Chitour, Y., Mason, P., Sigalotti, M.: On the marginal instability of linear switched systems..Systems Control Lett. 61 (2012), 747-757. MR 2929512, 10.1016/j.sysconle.2012.04.005 |
Reference:
|
[5] Gurvits, L.: Stability of discrete linear inclusions..Linear Algebra Appl. 231 (1995), 47-85. MR 1361100, 10.1016/0024-3795(95)90006-3 |
Reference:
|
[6] Johansson, M.: Piecewise Linear Control Systems..Springer, New York 2003. MR 1946385, 10.1007/3-540-36801-9 |
Reference:
|
[7] Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems..IEEE Trans. Automat. Control 43 (1998), 4, 555-559. MR 1617547, 10.1109/9.664157 |
Reference:
|
[8] Liberzon, D., Hespanha, J., Morse, A.: Stability of switched systems: A Lie-algebraic condition..Systems Control Lett. 37 (1999), 117-122. MR 1751257, 10.1016/s0167-6911(99)00012-2 |
Reference:
|
[9] Lin, M., Sun, Z.: Approximating the spectral abscissa for switched linear systems via coordinate transformations..J. Systems Science Complexity 29 (2016), 2, 350-366. MR 3479753, 10.1007/s11424-015-4175-0 |
Reference:
|
[10] Molchanov, A., Pyatnitskiy, Y.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory..Systems Control Lett. 13 (1989), 1, 59-64. MR 1006848, 10.1016/0167-6911(89)90021-2 |
Reference:
|
[11] Morse, A.: Supervisory control of families of linear set-point controllers {Part I.} {Exact} matching..IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431. MR 1413375, 10.1109/9.539424 |
Reference:
|
[12] Narendra, K., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices..IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471. MR 1337573, 10.1109/9.362846 |
Reference:
|
[13] Nedic, A., Ozdaglar, A.: Subgradient methods for saddle-point problems..J. Optim. Theory Appl. 1 (2009), 205-228. MR 2520367, 10.1007/s10957-009-9522-7 |
Reference:
|
[14] Parrilo, P., Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares..Linear Algebra Appl. 428 (2008), 10, 2385-2402. MR 2408034, 10.1016/j.laa.2007.12.027 |
Reference:
|
[15] Protasov, V., Jungers, R.: Analysing the stability of linear systems via exponential Chebyshev polynomials..IEEE Trans. Automat. Control 61 (2016), 3, 795-798. MR 3474181, 10.1016/j.laa.2007.12.027 |
Reference:
|
[16] Shih, M., Wu, J., Pang, C.: Asymptotic stability and generalized Gelfand spectral radius formula..Linear Algebra Appl. 252 (1997), 61-70. MR 1428628, 10.1016/0024-3795(95)00592-7 |
Reference:
|
[17] Sun, Z.: A note on marginal stability of switched systems..IEEE Trans. Automat. Control 53 (2008), 2, 625-631. MR 2394405, 10.1109/tac.2008.917644 |
Reference:
|
[18] Sun, Z.: Matrix measure approach for stability of switched linear systems..In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007. |
Reference:
|
[19] Shorten, R., Narendra, K.: On common quadratic Lapunov functions for pairs of stable LTI systems whose system matrices are in companion form..IEEE Trans. Automat. Control 48 (2003), 4, 618-621. MR 1968044, 10.1109/tac.2003.809795 |
Reference:
|
[20] Sun, Z., Ge, S.: Stability Theory of Switched Dynamical Systems..Springer-Verlag, London 2011. MR 3221851, 10.1007/978-0-85729-256-8 |
Reference:
|
[21] Xiong, J., Sun, Z.: Approximation of extreme measure for switched linear systems..In: 9th IEEE International Conference on Control and Automation, Santiago 2011. 10.1109/icca.2011.6138012 |
. |