Previous |  Up |  Next

Article

Title: Routh-type $L_2$ model reduction revisited (English)
Author: Krajewski, Wiesław
Author: Viaro, Umberto
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 557-575
Summary lang: English
.
Category: math
.
Summary: A computationally simple method for generating reduced-order models that minimise the $L_2$ norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the $L_2$-optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to approximations that are not worse than those afforded by popular more cumbersome techniques. (English)
Keyword: model reduction
Keyword: $L_2$ norm
Keyword: Routh approximation
Keyword: steady–state response
MSC: 93A15
MSC: 93B11
MSC: 93C05
idZBL: Zbl 06987022
idMR: MR3844832
DOI: 10.14736/kyb-2018-3-0557
.
Date available: 2018-11-02T10:19:53Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147436
.
Reference: [1] Alsmadi, O.M.K., Abo-Hammour, Z.S.: A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms..Computational Intelligence and Neuroscience 2015 (2015), 1-9. 10.1155/2015/615079
Reference: [2] Astolfi, A.: Model reduction by moment matching for linear and nonlinear systems..IEEE Trans. Automat. Contr. 55 (2010), 2321-2336. MR 2742223, 10.1109/tac.2010.2046044
Reference: [3] Barnett, S., Šiljac, D. D.: Routh's algorithm: a centennial survey..SIAM Review 19 (1977), 472-489. MR 0446660, 10.1137/1019070
Reference: [4] Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction..SIAM J. Scientific Computing 33 (2011), 2489-2518. MR 2861634, 10.1137/090776925
Reference: [5] Bistritz, Y.: Optimal fraction-free Routh tests for complex and real integer polynomials..IEEE Trans. Circuits Syst. I 60 (2013), 2453-2464. MR 3105256, 10.1109/tcsi.2013.2246232
Reference: [6] Beghi, A., Lepschy, A., Viaro, U.: A property of the Routh table and its use..IEEE Trans. Automat. Control 39 (1994), 2494-2496. MR 1337580, 10.1109/9.362839
Reference: [7] Benner, P., Grundel, S., Hornung, N.: Parametric model order reduction with a small $H_2$-error using radial basis functions..Adv. Comput. Math. 41 (2015), 5, 1231-1253. MR 3428565, 10.1007/s10444-015-9410-7
Reference: [8] Bultheel, A., Moor, B. De: Rational approximation in linear systems and control..J. Comput. Appl. Math. 121 (2000), 355-378. MR 1780055, 10.1016/s0377-0427(00)00339-3
Reference: [9] Bultheel, A., Barel, M. Van: Padé techniques for model reduction in linear system theory: a survey..J. Comput. Appl. Math. 14 (1986), 401-438. MR 0831083, 10.1016/0377-0427(86)90076-2
Reference: [10] Chahlaoui, Y., Dooren, P. Van: A collection of benchmark examples for model reduction of linear time invariant dynamical systems..SLICOT Working Note 2002-2: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction. (2002).
Reference: [11] Desai, S. R., Prasad, R.: A new approach to order reduction using stability equation and big bang big crunch optimization..Systems Science Control Engineering: An Open Access J. 1 (2013), 20-27. 10.1080/21642583.2013.804463
Reference: [12] Desai, S. R., Prasad, R.: Generating lower order systems using modified truncation and PSO..Int. J. Computer Appl. 12 (2013), 17-21.
Reference: [13] Dorato, P., Lepschy, A., Viaro, U.: Some comments on steady-state and asymptotic responses..IEEE Trans. Education 37 (1994), 264-268. 10.1109/13.312135
Reference: [14] Ferrante, A., Krajewski, W., Lepschy, A., Viaro, U.: Convergent algorithm for $L_2$ model reduction..Automatica 35 (1999), 75-79. 10.1016/s0005-1098(98)00142-3
Reference: [15] Fortuna, L., Nunnari, G., Gallo, A.: Model Order Reduction Techniques with Applications in Electrical Engineering..Springer-Verlag, London 1992. 10.1007/978-1-4471-3198-4
Reference: [16] Fuhrmann, P. A.: A polynomial approach to Hankel norm and balanced approximations..Linear Algebra Appl. 146 (1991), 133-220. MR 1083469, 10.1016/0024-3795(91)90025-r
Reference: [17] Gawronski, W. K.: Dynamics and Control of Structures: A Modal Approach..Springer, New York, 1998. MR 1641222, 10.1016/0024-3795(91)90025-r
Reference: [18] Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds..Int. J. Control 39 (1984), 1115-1193. MR 0748558, 10.1080/00207178408933239
Reference: [19] Gu, G.: All optimal Hankel-norm approximations of linear multivariable systems and their $L_{\infty}$-error bounds in discrete time..Int. J. Control 78 (2005), 408-423. MR 2147650, 10.1080/00207170500110988
Reference: [20] Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results..Int. J. Control 77 (2004), 748-766. MR 2072207, 10.1080/00207170410001713448
Reference: [21] Gugercin, S., Antoulas, A., Beattie, C.: A rational Krylov iteration for optimal $H_2$ model reduction..Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 1665-1667.
Reference: [22] Gugercin, S., Antoulas, A., Beattie, C.: $H_2$ model reduction for large-scale linear dynamical systems..SIAM J. Matrix Analysis Appl. 30 (2008), 609-638. MR 2421462, 10.1137/060666123
Reference: [23] Gugercin, S., Polyuga, R. V., Beattie, C., Schaft, A. van der: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems..Automatica 48 (2012), 1963-1974. MR 2956873, 10.1016/j.automatica.2012.05.052
Reference: [24] Huang, X. X., Yan, W. Y., Teo, K. L.: $H_2$ near-optimal model reduction..IEEE Trans. Automat. Control 46 (2001), 1279-1284. MR 1847334, 10.1109/9.940934
Reference: [25] Hutton, M. F., Friedland, B.: Routh approximations for reducing order of linear, time-invariant systems..IEEE Trans. Automat. Control 20 (1975), 329-337. MR 0439332, 10.1109/tac.1975.1100953
Reference: [26] Jeltsch, R., Mansour, M., eds: Stability Theory: Hurwitz Centenary Conference 1995..Birkhäuser, Basel, Switzerland, 1996. MR 1416358, 10.1007/978-3-0348-9208-7
Reference: [27] King, A. M., Desai, U. B., Skelton, R. E.: A generalized approach to q-Markov covariance equivalent realizations for discrete systems..Automatica 24 (1988), 507-515. MR 0956572, 10.1016/0005-1098(88)90095-7
Reference: [28] Krajewski, W., Lepschy, A., Viaro, U.: Compact form of the optimality conditions for multivariable $L_2$ model reduction..Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CL (1991/92) (1992), 119-128. MR 1261290
Reference: [29] Krajewski, W., Lepschy, A., Mian, G. A., Viaro, U.: Optimality conditions in multivariable $L_2$ model reduction..J. Franklin Inst. 330 (1993), 431-439. MR 1216978, 10.1016/0016-0032(93)90090-h
Reference: [30] Krajewski, W., Lepschy, A., Viaro, U.: Remarks on algorithms for $L_2$ model reduction..Atti Ist. Veneto SS.LL.AA.: Classe di Scienze Fisiche, Matematiche e Naturali Tomo CLII (1993/1994) (1994), 99-106. MR 1353809
Reference: [31] Krajewski, W., Lepschy, A., Viaro, U.: Reduction of linear continuous-time multivariable systems by matching first- and second-order information..IEEE Trans. Automat. Control 39 (1994), 2126-2129. MR 1295743, 10.1109/9.328814
Reference: [32] Krajewski, W., Lepschy, A., Viaro, U.: Model reduction by matching Markov parameters, time moments, and impulse-response energies..IEEE Trans. Automat. Contr. 40, 949-953. MR 1328099, 10.1109/9.384238
Reference: [33] Krajewski, W., Lepschy, A., Redivo-Zaglia, M., Viaro, U.: A program for solving the L2 reduced-order problem with fixed denominator degree..Numerical Algorithms 9 (1995), 355-377. MR 1339727, 10.1007/bf02141596
Reference: [34] Krajewski, W., Viaro, U.: On MIMO model reduction by the weighted equation-error approach..Numerical Algorithms 44 (2007), 83-98. MR 2322146, 10.1007/s11075-007-9086-2
Reference: [35] Krajewski, W., Viaro, U.: Iterative-interpolation algorithms for $L_2$ model reduction..Control and Cybernetics 38 (2009), 543-554. MR 2591289
Reference: [36] Krishnamurthy, V., Seshadri, V.: Model reduction using the Routh stability criterion..IEEE Trans. Automat. Contr. 23 (1978), 729-731. 10.1109/tac.1978.1101805
Reference: [37] Lepschy, A., Mian, G. A., Viaro, U.: A geometrical interpretation of the Routh test..J. Franklin Inst. 325 (1988, 695-703. MR 0971159, 10.1016/0016-0032(88)90003-8
Reference: [38] Lepschy, A., Mian, G. A., Viaro, U.: Splitting of some $s$-domain stability test algorithms..Int. J. Control 50 (1989), 2237-2247. 10.1080/00207178908953495
Reference: [39] Luenberger, D. G.: Optimization by Vector Space Methods..Wiley, New York 1969. MR 0238472, 10.1137/1012072
Reference: [40] Meier, L., Luenberger, D. G.: Approximation of linear constant systems..IEEE Trans. Automat. Contr. 12 (1967), 585-588. 10.1109/tac.1967.1098680
Reference: [41] Mi, W., Qian, T., Wan, F.: A fast adaptive model reduction method based on Takenaka-Malmquist systems..Systems Control Lett. 61 (2012), 223-230. MR 2878709, 10.1016/j.sysconle.2011.10.016
Reference: [42] Mittal, S. K., Chandra, D., Dwivedi, B.: A computer-aided approach for Routh-Padé approximation of SISO systems based on multi-objective optimization..Int. J. Eng. Technol. 2 (2010), 204-210. MR 2579902
Reference: [43] Moore, B. C.: Principal component analysis in linear systems: controllability, observability, and model reduction..IEEE Trans. Automat. Control 26 (1981), 17-32. MR 0609248, 10.1109/tac.1981.1102568
Reference: [44] Mukherjee, S., Satakshi, Mittal, R .C.: Model order reduction using response-matching technique..J. Franklin Inst. 342 (2005), 503-519. MR 2150730, 10.1016/j.jfranklin.2005.01.008
Reference: [45] Mullis, C. T., Roberts, R. A.: The use of second-order data in the approximation of discrete-time linear systems..IEEE Trans. Acoust. Speech Signal Process. 24 (1976), 226-238. MR 0497017, 10.1109/tassp.1976.1162795
Reference: [46] Pan, V.Y.: Solving a polynomial equation: some history and recent progress..SIAM Rev. 39 (1997), 187-220. MR 1453318, 10.1137/s0036144595288554
Reference: [47] Panda, S., Tomar, S. K., Prasad, R., Ardil, C.: Reduction of linear time-invariant systems using Routh-approximation and PSO..Int. J. Electrical Computer Electronics and Communication Eng. 3 (2009), 20-27. MR 2482061
Reference: [48] Parmar, G., Mukherjee, S., Prasad, R.: System reduction using factor division algorithm and eigen spectrum analysis..Appl. Math. Modelling 31 (2007), 2542-2552. Zbl 1118.93028, 10.1016/j.apm.2006.10.004
Reference: [49] Petersson, D., Löfberg, J.: Model reduction using a frequency-limited $H_2$ cost..Systems Control Lett. 67 (2012), 32-39. MR 3183378, 10.1016/j.sysconle.2014.02.004
Reference: [50] Qiu, L.: What can Routh table offer in addition to stability?..J. Contr. Theory Appl. 1 (2003), 9-16. MR 2093619, 10.1007/s11768-003-0003-5
Reference: [51] Ramawat, K., Kumar, A.: Improved Padé-pole clustering approach using genetic algorithm for model order reduction..Int. J. Computer Appl. 114 (2015), 24-285. 10.5120/19943-1737
Reference: [52] Rana, J. S., Prasad, R., Singh, R.: Order reduction using modified pole clustering and factor division method..Int. J. Innovative Tech. Exploring Eng. 3 (2014), 134-136.
Reference: [53] Ryaben'kii, V. S., Tsynkov, S. V.: A Theoretical Introduction to Numerical Analysis..Chapman and Hall/CRC (Taylor and Francis Group), Boca Raton 2006.
Reference: [54] Rydel, M., Stanisławski, W.: Selection of fitness functions for evolutionary algorithms and their influence on the properties of a reduced mathematical MIMO model..In: Proc. IEEE Int. Conf. Methods and Models in Automation and Robotics, Miedzyzdroje 2015. 10.1109/mmar.2015.7283941
Reference: [55] Saini, D. K., Prasad, R.: Order reduction of linear interval systems using genetic algorithm..Int. J. Eng. Technol. 2 (2010), 316-319.
Reference: [56] Sikander, A., Prasad, R.: A novel order reduction method using cuckoo search algorithm..IETE J. Research 61 (2015), 83-90. 10.1080/03772063.2015.1009396
Reference: [57] Sikander, A., Prasad, R.: Linear time invariant system reduction using mixed method approach..Appl. Math. Modelling 39 (2015), 4848-4858. MR 3354872, 10.1016/j.apm.2015.04.014
Reference: [58] Soh, C. B.: Generalization of the Hermite-Biehler theorem and applications..IEEE Trans. Automat. Control 35 (1990), 222-225. MR 1038425, 10.1109/9.45186
Reference: [59] Soloklo, H. N., Farsangi, M. M.: Order reduction by minimizing integral square error and $H_{\infty}$ norm of error..J. Adv. Computer Res. 5 (2014), 29-42.
Reference: [60] Sreeram, V., Agathoklis, P.: Model reduction of linear discrete systems via weighted impulse response Gramians..Int. J. Control 53 (1991), 129-144. MR 1085103, 10.1080/00207179108953613
Reference: [61] Tanguy, N., Iassamen, N., Telescu, M., Cloastre, P.: Parameter optimization of orthonormal basis functions for efficient rational approximations..Appl. Math. Modelling 39 (2015), 4963-4970. MR 3354880, 10.1016/j.apm.2015.04.017
Reference: [62] Dooren, P. Van, Gallivan, K. A., Absil, P. A.: $H_2$-optimal model reduction of MIMO systems..Appl. Math. Lett. 21 (2008), 1267-1273. MR 2464378, 10.1016/j.aml.2007.09.015
Reference: [63] Varga, A., Anderson, B. D. O.: Accuracy-enhancing methods for balancing-related frequency-weighted model and controller reduction..Automatica 39 (2003), 919-927. MR 2138365, 10.1016/s0005-1098(03)00030-x
Reference: [64] Viaro, U.: Stability tests revisited..In: A Tribute to Antonio Lepschy (G. Picci and M. E. Valcher, eds.), Edizioni Libreria Progetto, Padova 2007, pp. 189-199.
Reference: [65] Vishwakarma, C.B., Prasad, R.: Order reduction using the advantages of differentiation method and factor division algorithm..Indian J. Engineering & Materials Sciences 15 (2008), 447-451.
Reference: [66] Xu, Y., Zeng, T.: Optimal $H_2$ model reduction for large scale MIMO systems via tangential interpolation..Int. J. Numerical Analysis and Modeling 8 (2011), 174-188. MR 2740486
Reference: [67] Wang, Y., Bernstein, D. S., Watson, L. T.: Probability-one homotopy algorithms for solving the coupled Lyapunov equations arising in reduced-order $H _2/H_{\infty}$ modeling, estimation, and control..Appl. Math Comput. 123 (2001), 155-185. MR 1847909, 10.1016/s0096-3003(00)00059-x
Reference: [68] Yan, W. Y., Lam, J.: An approximate approach to $H^2$ optimal model reduction..IEEE Trans. Automat. Control 44 (1999), 1341-1358. MR 1697424, 10.1109/9.774107
Reference: [69] Zeng, C., Chen, Y. Q.: Global Padé approximations of the generalized Mittag-Leffler function and its inverse..Fractional Calculus and Applied Analysis (arXiv:1310.5592) 18 (2015), 1-15. MR 3433025, 10.1515/fca-2015-0086
Reference: [70] Zeng, T., Lu, C.: Two-sided Grassmann manifold algorithm for optimal $H_2$ model reduction..Int. J. Numerical Methods Engrg. 104 (2015), 10, 928-943. MR 3416241, 10.1515/fca-2015-0086
Reference: [71] Ziegler, J. G., Nichols, N. B.: Optimum settings for automatic controllers..Trans. ASME 64 (1942), 759-765. 10.1109/tit.1972.1054906
Reference: [72] Žigić, D., Watson, L. T., Collins, E. G., Jr., Bernstein, D. S.: Homotopy methods for solving the optimal projection equations for the $H_2$ reduced order model problem..Int. J. Control 56 (1992), 173-191. MR 1170891, 10.1080/00207179208934308
.

Files

Files Size Format View
Kybernetika_54-2018-3_8.pdf 567.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo