Previous |  Up |  Next


bio-inspired algorithms; particle swarm optimization; differential evolution; meta-optimization; computer-aided design; antenna arrays
In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the initial parameters. In this paper, the distances between antenna array elements are calculated in order to reduce electromagnetic interference from undesired sources. The results are compared to previous works, showing an improvement on the performance of bio-inspired optimization algorithms such as Particle Swarm Optimization and Differential Evolution. These results are found to be statistically significant based on the Wilcoxon's rank sum test as compared to these methods using the standard parameters proposed in the literature. Furthermore, graphical representations of the Meta-Optimization process called meta-landscapes are presented, showing the behavior of these algorithms for a range of different parameters, providing the best parameter combinations for each antenna problem.
[1] Anguera, J., Andújar, A., Huynh, M. C., Orlenius, C., Picher, C., Puente, C.: Advances in antenna technology for wireless handheld devices. Int. J. Antennas Propag. 2013 (2013), 1-25. DOI 10.1155/2013/838364
[2] Balanis, C. A.: Antenna Theory: Analysis and Design. Fourth edition. John Wiley and Sons, New Jersey 2016.
[3] Bellman, R. E.: Dynamic Programming. Princeton University Press 1957. MR 0090477 | Zbl 1205.90002
[4] Chowdhury, A., Giri, R., Ghosh, A., Das, S., Abraham, A., Snasel, V.: Linear antenna array synthesis using fitness-adaptive differential evolution algorithm. In: IEEE Congress on Evolutionary Comutation 2010, pp. 1-8. DOI 10.1109/cec.2010.5586518
[5] Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6 (2002), 58-73. DOI 10.1109/4235.985692
[6] Davidon, W. C.: Variable metric method for minimization. J. Optim. 1, (1991), 1-17. DOI 10.1137/0801001 | MR 1094786
[7] León-Zapata, R. Díaz de, González, G., Flores-García, E., Rodríguez, A. G., González, F. J.: Evolutionary algorithm geometry optimization of optical antennas. Int. J. Antennas Propag. 2016 (2016), 1-7. DOI 10.1155/2016/3156702
[8] Eberhart, R. C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proc. 2000 Congress on Evolutionary Computation 1 (2000), pp. 84-88. DOI 10.1109/cec.2000.870279
[9] Eberhart, R. C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proc. 2001 Congr. Evol. Comput. 1 (2001), pp. 81-86. DOI 10.1109/cec.2001.934374
[10] Eiben, A. E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. In: IEEE Trans. Evol. Comput. 3 (1999), 124-141. DOI 10.1109/4235.771166
[11] García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 Special Session on Real Parameter Optimization. J. Heurist. 15 (2009), 6, 617-644. DOI 10.1007/s10732-008-9080-4
[12] Godara, L. C.: Handbook of Antennas in Wireless Communications. CRC Press, Inc., Boca Raton 2001. DOI 10.1201/9781420042146
[13] He, Y., Zhou, J., Lu, N., Qin, H., Lu, Y.: Differential evolution algorithm combined with chaotic pattern search. Kybernetika 46 (2010), 4, 684-696. MR 2722095
[14] Ho, M.-H., Chiu, C.-C., Liao, S.-H.: Bit error rate reduction for circular ultrawideband antenna by dynamic differential evolution. Int. J. RF Microw. Comput. Eng. 22 (2012), 260-271. DOI 10.1002/mmce.20604
[15] Hooke, R., Jeeves, T. A.: "Direct Search" Solution of numerical and statistical problems. J. ACM 8 (1961), 212-229. DOI 10.1145/321062.321069
[16] Jin, N., Rahmat-Samii, Y.: Hybrid Real-Binary Particle Swarm Optimization (HPSO) in engineering electromagnetics. IEEE Trans. Antennas Propag. 58 (2010), 3786-3794. DOI 10.1109/tap.2010.2078477
[17] Jordehi, A. R., Jasni, J.: Parameter selection in particle swarm optimisation: a survey. J. Exp. Theor. Artif. Intell. 25 (2013), 527-542. DOI 10.1080/0952813x.2013.782348
[18] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEE Internat. Conf on Neural Networks 4 (1995), pp. 1942-1948. DOI 10.1109/icnn.1995.488968
[19] Kennedy, J., Spears, W. M.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence 1998, pp. 78-83. DOI 10.1109/icec.1998.699326
[20] Khodier, M. M.: Optimisation of antenna arrays using the cuckoo search algorithm. Microwaves, Antennas Propagation, IET 7 (2013), 458-464. DOI 10.1049/iet-map.2012.0692
[21] Khodier, M. M., Christodoulou, C. G.: Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag. 53 (2005), 2674-2679. DOI 10.1109/tap.2005.851762
[22] Lalithamanohar, G., Kumar, A. T. Praveen, Subhashini, K. R.: Constrained performance comparison of antenna synthesis using swarm and ecology techniques. In: 2013 1st Int. Conf. Commun. Signal Process. Their Appl. ICCSPA 2013, pp. 0-5. DOI 10.1109/iccspa.2013.6487256
[23] Li, X., Li, W.-T., Shi, X.-W., Yang, J.: Synthesis of antenna arrays with an efficient multiobjective differential evolution algorithm. Int. J. RF Microw. Comput. Eng. 24 (2014), 161-169. DOI 10.1002/mmce.20744
[24] Liu, Y., Jiao, Y.-C., Zhang, Y.-M.: A novel hybrid invasive weed optimization algorithm for pattern synthesis of array antennas. Int. J. RF Microw. Comput. Eng. 25 (2015), 154-163. DOI 10.1002/mmce.20844
[25] Mahto, S. K., Choubey, A., Suman, S.: Linear array synthesis with minimum side lobe level and null control using wind driven optimization. In: 2015 International Conference on Signal Processing and Communication Engineering Systems, pp. 191-195. DOI 10.1109/spaces.2015.7058246
[26] Mandal, D., Ghoshal, S. P., Bhattacharjee, A. K.: Wide null control of symmetric linear antenna array using novel particle swarm optimization. Int. J. RF Microw. Comput. Eng. 21 (2011), 376-382. DOI 10.1002/mmce.20526
[27] Mercer, R. E., Sampson, J. R.: Adaptive search using a reproductive metaplan. Int. J. Systems Cybernet. 7 (1978), 3, 215-228. DOI 10.1108/eb005486
[28] Panduro, M. A., Brizuela, C. A.: A comparative analysis of the performance of GA, PSO and DE for circular antenna arrays. In: 2009 IEEE Antennas and Propagation Society International Symposium 2009, pp. 1-4. DOI 10.1109/aps.2009.5171514
[29] Pedersen, M. E. H.: Tuning \& Simplifying Heuristical Optimization. University of Southampton 2010.
[30] Pedersen, M. E. H.: SwarmOps. Numerical \& Heuristic optimization. Online, 2011. Available: DOI 
[31] Pedersen, M. E. H., Chipperfield, A. J.: Local unimodal sampling. Hvass Laboratories Technical Report HL0801 (2008), 1-10.
[32] Petrella, N., Khodier, M. M., Antonini, M., Ruggieri, M., Barbin, S E., Christodoulou, C. G.: Planar array synthesis with minimum sidelobe level and null control using particle swarm optimization. In: 2006 International Conference on Microwaves, Radar \& Wireless Communications 2006, pp. 1087-1090. DOI 10.1109/mikon.2006.4345374
[33] Portilla-Flores, E. A., Calva-Yáñez, M.B., Villarreal-Cervantes, M. G., Suárez, P. A. Niño, Sepúlveda-Cervantes, G.: Dynamic approach to optimum synthesis of a four-bar mechanism using a swarm intelligence algorithm. Kybernetika 50 (2014), 5, 786-803. DOI 10.14736/kyb-2014-5-0786
[34] Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in Electromagnetics. IEEE Trans. Antennas Propag. 52 (2004), 397-407. DOI 10.1109/tap.2004.823969 | MR 2076528
[35] Secmen, M., Tasgetiren, M. F., Karabulut, K.: Null control in linear antenna arrays with ensemble differential evolution. In: Proc. 2013 IEEE Symposium on Differential Evolution (SDE) 2013, pp. 92-98. DOI 10.1109/sde.2013.6601447
[36] Shi, Y., Eberhart, R. C.: Parameter selection in particle swarm optimization. In: Proc. 7th International Conference on Evolutionary Programming VII 1998, pp. 591-600. DOI 10.1007/bfb0040810
[37] Shihab, M., Najjar, Y., Dib, N., Khodier, M.: Design of non-uniform circular antenna arrays using particle swarm optimization. J. Electr. Eng. 59 (2008), 216-220.
[38] Storn, R.: On the usage of differential evolution for function optimization. In: Bienn. Conf. North Am. Fuzzy Inf. Process. Soc. 1996, pp. 519-523. DOI 10.1109/nafips.1996.534789
[39] Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11 (1997), 341-359. DOI 10.1023/a:1008202821328 | MR 1479553
[40] Trelea, I. C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85 (2003), 317-325. DOI 10.1016/s0020-0190(02)00447-7 | MR 1956454
[41] Yang, S. H., Kiang, J. F.: Adjustment of beamwidth and side-lobe level of large phased-arrays using particle swarm optimization technique. IEEE Trans. Antennas Propag. 62 (2014), 138-144. DOI 10.1109/tap.2013.2287280
Partner of
EuDML logo