Previous |  Up |  Next

Article

Title: Two-spinor tetrad and Lie derivatives of Einstein-Cartan-Dirac fields (English)
Author: Canarutto, Daniel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 205-226
Summary lang: English
.
Category: math
.
Summary: An integrated approach to Lie derivatives of spinors, spinor connections and the gravitational field is presented, in the context of a previously proposed, partly original formulation of a theory of Einstein-Cartan-Maxwell-Dirac fields based on “minimal geometric data”: the needed underlying structure is determined, via geometric constructions, from the unique assumption of a complex vector bundle $SM$ with 2-dimensional fibers, called a $2$-spinor bundle. Any further considered object is assumed to be a dynamical field; these include the gravitational field, which is jointly represented by a soldering form (the tetrad) relating the tangent space $M$ to the $2$-spinor bundle, and a connection of the latter (spinor connection). The Lie derivatives of objects of all considered types, with respect to a vector field ${\scriptstyle X}\colon M\rightarrow M$, turn out to be well-defined without making any special assumption about ${\scriptstyle X}$, and fulfill natural mutual relations. (English)
Keyword: Lie derivatives of spinors
Keyword: Lie derivatives of spinor connections
Keyword: deformed tetrad gravity
MSC: 53B05
MSC: 58A32
MSC: 83C60
idZBL: Zbl 06997351
idMR: MR3887361
DOI: 10.5817/AM2018-4-205
.
Date available: 2018-12-06T16:08:31Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147498
.
Reference: [1] Antipin, O., Mojaza, M., Sannino, F.: Conformal extensions of the standard model with Veltman conditions.Phys. Rev. D 89 (8) (2014), 085015 arXiv:1310.0957v3. Published 7 April 2014. 10.1103/PhysRevD.89.085015
Reference: [2] Canarutto, D.: Possibly degenerate tetrad gravity and Maxwell-Dirac fields.J. Math. Phys. 39 (9) (1998), 4814–4823. MR 1643353, 10.1063/1.532541
Reference: [3] Canarutto, D.: Two-spinors, field theories and geometric optics in curved spacetime.Acta Appl. Math. 62 (2) (2000), 187–224. MR 1792110, 10.1023/A:1006455216170
Reference: [4] Canarutto, D.: Minimal geometric data’ approach to Dirac algebra, spinor groups and field theories.Int. J. Geom. Methods Mod. Phys. 4 (6) (2007), 1005–1040, arXiv:math-ph/0703003. MR 2352863, 10.1142/S0219887807002417
Reference: [5] Canarutto, D.: Fermi transport of spinors and free QED states in curved spacetime.Int. J. Geom. Methods Mod. Phys. 6 (5) (2009), 805–824, arXiv:0812.0651v1 [math-ph]. MR 2555478, 10.1142/S0219887809003801
Reference: [6] Canarutto, D.: Tetrad gravity, electroweak geometry and conformal symmetry.Int. J. Geom. Methods Mod. Phys. 8 (4) (2011), 797–819, arXiv:1009.2255v1 [math-ph]. MR 2817601, 10.1142/S0219887811005403
Reference: [7] Canarutto, D.: Positive spaces, generalized semi-densities and quantum interactions.J. Math. Phys. 53 (3) (2012), http://dx.doi.org/10.1063/1.3695348 (24 pages). MR 2798214, 10.1063/1.3695348
Reference: [8] Canarutto, D.: Two-spinor geometry and gauge freedom.Int. J. Geom. Methods Mod. Phys. 11 (2014), DOI: http://dx.doi.org/10.1142/S0219887814600160, arXiv:1404.5054 [math-ph]. MR 3249638, 10.1142/S0219887814600160
Reference: [9] Canarutto, D.: Natural extensions of electroweak geometry and Higgs interactions.Ann. Henri Poincaré 16 (11) (2015), 2695–2711. MR 3411744, 10.1007/s00023-014-0383-8
Reference: [10] Canarutto, D.: Overconnections and the energy-tensors of gauge and gravitational fields.J. Geom. Phys. 106 (2016), 192–204, arXiv:1512.02584 [math-ph]. MR 3508914, 10.1016/j.geomphys.2016.03.027
Reference: [11] Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion.C. R. Acad. Sci. Paris 174 (1922), 593–595.
Reference: [12] Cartan, É.: Sur les variétés á connexion affine et la théorie de la relativité généralisée, Part I.rt I, Ann. Sci. École Norm. Sup. 40 (1923), 325–412, and ibid. 41 (1924), 1–25; Part II: ibid. 42 (1925), 17–88. MR 1509255, 10.24033/asens.751
Reference: [13] Corianò, C., Rose, L. Delle, Quintavalle, A., Serino, M.: Dilaton interactions and the anomalous breaking of scale invariance of the standard model.J. High Energy Phys. 77 (2013), 42 pages. MR 3083333
Reference: [14] Faddeev, L.D.: An alternative interpretation of the Weinberg-Salam model.Progress in High Energy Physics and Nuclear Safety (Begun, V., Jenkovszky, L., Polański, A., eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 2009, arXiv:hep-th/0811.3311v2.
Reference: [15] Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M.: A geometric definition of Lie derivative for spinor fields.Proceedings of the conference “Differential Geometry and Applications”, Masaryk University, Brno, 1996, pp. 549–557. MR 1406374
Reference: [16] Ferraris, M., Kijowski, J.: Unified Geometric Theory of Electromagnetic and Gravitational Interactions.Gen. Relativity Gravitation 14 (1) (1982), 37–47. MR 0650163, 10.1007/BF00756195
Reference: [17] Foot, R., Kobakhidze, A., McDonald, K.L.: Dilaton as the Higgs boson.Eur. Phys. J. C 68 (2010), 421–424, arXiv:0812.1604v2. 10.1140/epjc/s10052-010-1368-5
Reference: [18] Frölicher, A., Nijenhuis, A.: Theory of vector valued differential forms, I.Indag. Math. 18 (1956). MR 0082554
Reference: [19] Godina, M., Matteucci, P.: The Lie derivative of spinor fields: theory and applications.Int. J. Geom. Methods Mod. Phys. 2 (2005), 159–188. MR 2140175, 10.1142/S0219887805000624
Reference: [20] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time.Cambridge Univ. Press, Cambridge, 1973. MR 0424186
Reference: [21] Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance.Phys. Rep 258 (1995), 1–171. MR 1340371, 10.1016/0370-1573(94)00111-F
Reference: [22] Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: Foundations and prospects.48 (3) (1976), 393–416. MR 0439001
Reference: [23] Hehl, W.: Spin and torsion in General Relativity: I. Foundations.Gen. Relativity Gravitation 4 (1973), 333–349. MR 0403543, 10.1007/BF00759853
Reference: [24] Hehl, W.: Spin and torsion in General Relativity: II. Geometry and field equations.Gen. Relativity Gravitation 5 (1974). MR 0416462, 10.1007/BF02451393
Reference: [25] Helfer, A.D.: Spinor Lie derivatives and Fermion stress-energies.Proc. R. Soc. A (to appear); arXiv:1602.00632 [hep-th]. MR 3471678
Reference: [26] Henneaux, M.: On geometrodynamics with tetrad fields.Gen. Relativity Gravitation 9 (11) (1978), 1031–1045. MR 0515804, 10.1007/BF00784663
Reference: [27] Ilderton, A., Lavelle, M., McMullan, D.: Symmetry breaking, conformal geometry and gauge invariance.J. Phys. A 43 (31) (2010), arXiv:1002.1170 [hep-th]. MR 2665667, 10.1088/1751-8113/43/31/312002
Reference: [28] Janyška, J., Modugno, M.: Covariant Schrödinger operator.J. Phys. A 35 (2002). MR 1947539, 10.1088/0305-4470/35/40/304
Reference: [29] Janyška, J., Modugno, M.: Hermitian vector fields and special phase functions.Int. J. Geom. Methods Mod. Phys. 3 (4) (2006), 1–36, arXiv:math-ph/0507070v1. MR 2237902, 10.1142/S0219887806001351
Reference: [30] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales.Acta Appl. Math. 110 (3) (2010), 1249–1276, arXiv:0710.1313v1. Zbl 1208.15021, MR 2639169, 10.1007/s10440-009-9505-6
Reference: [31] Kijowski, J.: A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity.Gen. Relativity Gravitation 29 (1997), 307–343. MR 1439857, 10.1023/A:1010268818255
Reference: [32] Kosmann, V.: Dérivées de Lie des spineurs.Ann. Mat. Pura Appl. 91 (1971), 317–395. MR 0312413, 10.1007/BF02428822
Reference: [33] Landau, L., Lifchitz, E.: Théorie du champ.Mir, Moscou, 1968. MR 0218091
Reference: [34] Lavelle, M., McMullan, D.: Observables and Gauge Fixing in Spontaneously Broken Gauge Theories.Phys. Lett. B 347 (1995), 89–94, arXiv:9412145v1. 10.1016/0370-2693(95)00046-N
Reference: [35] Leão, R.F., Rodrigues, Jr., W.A., Wainer, S.A.: Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach.Adv. Appl. Clifford Algebras (2015), arXiv:1411.7845 [math-ph]. MR 3619360
Reference: [36] Mangiarotti, L., Modugno, M.: Fibered spaces, jet spaces and connections for field theory.Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna, 1983, pp. 135–165. MR 0760841
Reference: [37] Michor, P.W.: Frölicher-Nijenhuis bracket.Encyclopaedia of Mathematics (Hazewinkel, M., ed.), Springer, 2001.
Reference: [38] Modugno, M., Saller, D., Tolksdorf, J.: Classification of infinitesimal symmetries in covariant classical mechanics.J. Math. Phys. 47 (2006), 062903. MR 2239972, 10.1063/1.2199068
Reference: [39] Novello, M., Bittencourt, E.: What is the origin of the mass of the Higgs boson?.Phys. Rev. D (2012), 063510, arXiv:1209.4871v1. 10.1103/PhysRevD.86.063510
Reference: [40] Ohanian, H.C.: Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breakin.Gen. Relativity Gravitation 48 (3) (2016), arXiv:1502.00020 [gr-qc]. MR 3456955, 10.1007/s10714-016-2023-8
Reference: [41] Padmanabhan, T.: General relativity from a thermodynamic perspective.Gen. Relativity Gravitation 46 (2014). MR 3177977, 10.1007/s10714-014-1673-7
Reference: [42] Penrose, R., Rindler, W.: Spinors and space-time. I: Two-spinor calculus and relativistic fields.Cambridge University Press, Cambridge, 1984. MR 0908073
Reference: [43] Penrose, R., Rindler, W.: Spinors and space-time. II: Spinor and twistor methods in space-time geometry.Cambridge University Press, Cambridge, 1988. MR 0990891
Reference: [44] Pervushinand, V.N., Arbuzov, A.B., Barbashov, B.M., Nazmitdinov, R.G., Borowiec, A., Pichugin, K.N., Zakharov, A.F.: Conformal and affine Hamiltonian dynamics of general relativity.Gen. Relativity Gravitation 44 (11) (2012), 2745–2783. MR 2989574, 10.1007/s10714-012-1423-7
Reference: [45] Pons, J.M.: Noether symmetries, energy-momentum tensors and conformal invariance in classical field theory.J. Math. Phys. 52 (2011), 012904, http://dx.doi.org/10.1063/1.3532941. MR 2791139, 10.1063/1.3532941
Reference: [46] Popławsky, N.J.: Geometrization of electromagnetism in tetrad-spin-connection gravity.Modern Phys. Lett. A 24 (6) (2009), 431–442. DOI: http://dx.doi.org/10.1142/S0217732309030151 MR 2510622, 10.1142/S0217732309030151
Reference: [47] Ryskin, M.G., Shuvaev, A.G.: Higgs boson as a dilaton.Phys. Atomic Nuclei 73 (2010), 965–970, arXiv:0909.3374v1. 10.1134/S1063778810060104
Reference: [48] Saller, D., Vitolo, R.: Symmetries in covariant classical mechanics.J. Math. Phys. 41 (10) (2000), 6824–6842. MR 1781409, 10.1063/1.1288795
Reference: [49] Sciama, D.W.: On a non-symmetric theory of the pure gravitational field.Math. Proc. Cambridge Philos. Soc. 54 (1) (1958), 72–80. MR 0094208, 10.1017/S030500410003320X
Reference: [50] Trautman, A.: Einstein-Cartan theory.Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G.L., Tsou, S.T., eds.), vol. 2, Elsevier, Oxford, 2006, pp. 189–195. MR 2238867
Reference: [51] Vitolo, R.: Quantum structures in Galilei general relativity.Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257. MR 1718181
Reference: [52] Vitolo, R: Quantum structures in Einstein general relativity.Lett. Math. Phys. 51 (2000), 119–133. Zbl 0977.83009, MR 1774641, 10.1023/A:1007624902983
Reference: [53] Yano, : Lie Derivatives and its Applications.North-Holland, Amsterdam, 1955.
.

Files

Files Size Format View
ArchMathRetro_054-2018-4_2.pdf 669.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo